Supplemental Digital Content is Available in the Text.Gastrin-releasing peptide receptor–expressing cells are interneurons that use glutamate to transmit the perception of chemical itch to the next step in the labeled line of itch in the spinal cord.
Psychophysical data have shown that under mesopic conditions cones and rods can interact, improving color vision. Since electrophysiological data have suggested that rods of dichromatic marmosets appear to be active at higher luminance, we aimed to investigate the effect of different levels of sunlight on the foraging abilities of male dichromatic marmosets. Captive marmosets were observed under three different conditions, with respect to their performance in detecting colored food items against a green background. Compared to high and low light intensities, intermediate luminosities significantly increased detection of orange targets by male dichromats, an indication of rod intrusion.
Dorsal horn gastrin-releasing peptide receptor (GRPR) neurons have a central role in itch transmission. Itch signaling has been suggested to be controlled by an inhibitory network in the spinal dorsal horn, as increased scratching behavior can be induced by pharmacological disinhibition or ablation of inhibitory interneurons, but the direct influence of the inhibitory tone on the GRPR neurons in the itch pathway have not been explored. Here we have investigated spinal GRPR neurons through in vitro and bioinformatical analysis. Electrophysiological recordings revealed that GRPR neurons receive local spontaneous excitatory inputs transmitted by glutamate and inhibitory inputs by glycine and GABA, which were transmitted either by separate glycinergic and GABAergic synapses or by glycine and GABA co-releasing synapses. Additionally, all GRPR neurons received both glycine- and GABA-induced tonic currents. The findings show a complex inhibitory network, composed of synaptic and tonic currents that gates the excitability of GRPR neurons, which provides direct evidence for the existence of an inhibitory tone controlling spontaneous discharge in an itch-related neuronal network in the spinal cord. Finally, calcium imaging revealed increased levels of neuronal activity in Grpr-Cre neurons upon application of somatostatin, which provides direct in vitro evidence for disinhibition of these dorsal horn interneurons.
Allergic reactions can in severe cases induce a state of circulatory shock referred to as anaphylaxis. Histamine, the primary mediator of this condition, is released from immune cells, and, therefore, anaphylaxis has so far been considered an immune system disorder. However, we here show that the glutamatergic receptor mGluR7, expressed on a subpopulation of both peripheral and spinal cord neurons, controls histamine-induced communication through calcium-dependent autoinhibition with implications for anaphylaxis. Genetic ablation of mGluR7, and thus altered regulation of histamine-sensing neurons, caused an anaphylaxis-like state in mGluR7(-/-) mice, which could be reversed by antagonizing signaling between neurons and mast cells but not by antagonizing a central itch pathway. Our findings demonstrate the vital role of nervous system control by mGluR7 in anaphylaxis and open up possibilities for preventive strategies for this life-threatening condition.
Rodent primary somatosensory cortex (S1) is organized in defined layers, where layer IV serves as the main target for thalamocortical projections. Serotoninergic signaling is important for the organization of thalamocortical projections and consequently proper barrel field development in rodents, and the vesicular monoamine transporter 2 (VMAT2) can be detected locally in layer IV S1 cortical neurons in mice as old as P10, but the identity of the Vmat2-expressing neurons is unknown. We here show that Vmat2 mRNA and also Vmat2-Cre recombinase are still expressed in adult mice in a sub-population of the S1 cortical neurons in the barrel field. The Vmat2-Cre cells showed a homogenous intrinsically bursting firing pattern determined by whole-cell patch-clamp, localized radial densely spinous basal dendritic trees and almost exclusively lack of apical dendrite, indicative of layer IV spiny stellate cells. Single cell mRNA sequencing analysis showed that S1 cortical Vmat2-Cre;tdTomato cells express the layer IV marker Rorb and mainly cluster with layer IV neurons, and RNAscope analysis revealed that adult Vmat2-Cre neurons express Vmat2 and vesicular glutamate transporter 1 (Vglut1) and Vglut2 mRNA to a high extent. In conclusion, our analysis shows that cortical Vmat2 expression is mainly confined to layer IV neurons with morphological, electrophysiological and transcriptional characteristics indicative of spiny stellate cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.