Chemical and biocatalytic synthesis of non-canonical a-amino acids (ncAAs) from renewable feedstocks and using mild reaction conditions has not efficiently been solved. Here, we show the development of a three-step, scalable and modular one-pot biocascade for linear conversion of renewable fatty acids (FAs) into enantiopure l-a-amino acids. In module 1, selective a-hydroxylation of FAs is catalyzed by the P450 peroxygenase P450 CLA . By using an automated H 2 O 2 supplementation system, efficient conversion (46 to > 99%; TTN > 3300) of a broad range of FAs (C6:0 to C16:0) into valuable a-hydroxy acids (a-HAs; > 90% a-selective) is shown on preparative scale (up to 2.3 g L À1 isolated product). In module 2, a redox-neutral hydrogen borrowing cascade (alcohol dehydrogenase/amino acid dehydrogenase) allowed further conversion of a-HAs into l-a-AAs (20 to 99%). Enantiopure l-a-AAs (e.e. > 99%) including the pharma synthon lhomo-phenylalanine can be obtained at product titers of up to 2.5 g L À1 . Based on renewables and excellent atom economy, this biocascade is among the shortest and greenest synthetic routes to structurally diverse and industrially relevant ncAAs.
In the course of this study, the dielectric and physicochemical properties of poly(2-oxazoline) (POx) networks from renewable resources were compared with those of fossil-based polyamide 12 (PA 12) networks. POx was synthesized by the energy-efficient, microwave-assisted copolymerization of 2-oxazoline monomers, which were derived from fatty acids of coconut and castor oil. For the preparation of composites, aluminum nitride nanoparticles n-AlN and microparticles μ-AlN as well as hexagonal boron nitride BN submicroparticles were used. Additionally, 0, 15, or 30 wt.% of a spiroorthoester (SOE) were added as an expanding monomer aiming to reduce the formation of shrinkage-related defects. For the crosslinking of the polymers and the SOE as well as the double ring-opening reaction of the SOE, a thermally triggered dual-cure system was developed. The fully-cured blends and composites containing SOEs exhibited lower densities than their fully-cured SOE-free analogues, which was indicative of a lower extent of shrinkage (or even volumetric expansion) during the curing reaction, which is referred to as relative expansion RE. The RE amounted to values in the range of 0.46 to 2.48 for PA 12-based samples and 1.39 to 7.50 vol.% for POx-based samples. At 40 Hz, the “green” POx networks show low loss factors, which are competitive to those of the fossil-based PA 12.
Nowadays, polymers used in technical applications are still obtained from petrochemicals, despite the more critical reviews from society. In this work, novel nanodielectrics based on renewable resources were developed. For this purpose, poly(2-oxazoline)s (POx), which can be referred to as pseudo-polyamides, were synthesized from renewable resources and compared with commercially available Nylon 12, which is derived from petrochemicals. The monomers 2-nonyl-2-oxazoline and 2-dec-9′-enyl-2-oxazoline were synthesized from coconut oil and castor oil in solvent-free syntheses according to the Henkel Patent; the corresponding copoly(2-oxazoline)s were synthesized in an energy-efficient fashion in microwave reactors under autoclave conditions. Both types of polyamides (two variations: POx and Nylon 12) were filled with inorganic nanoparticles (four variations: no filler, submicro-scaled BN, nano- and micro-scaled AlN as well as a mixture of nano- and micro-scaled AlN and submicro-scaled BN) and/or expanding monomers, namely spiroorthoesters (three variations: 0, 15, and 30 wt.-%), yielding a 2 × 4 × 3 = 24-membered material library. All polymers were crosslinked according to a newly developed thermally-initiated dual/bi-stage curing system. Intense physicochemical and dielectric characterization revealed that the relative volume expansion was in the range of 0.46 to 2.48 vol.-% for the Nylon 12 samples and in the range of 1.39 to 7.69 vol.-% for the POx samples. Hence, the formation micro-cracks or micro-voids during curing is significantly reduced. The dielectric measurements show competitive dielectric behavior of the “green” POx samples in comparison with the fossil-based Nylon 12 samples at a frequency of 40 Hz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.