It is shown that phantom scalar models can be mapped into a mathematically equivalent, modified F (R) gravity, which turns out to be complex, in general. Only for even scalar potentials is the ensuing modified gravity real. It is also demonstrated that, even in this case, modified gravity becomes complex at the region where the original phantom dark energy theory develops a Big Rip singularity. A number of explicit examples are presented which show that these two theories are not completely equivalent, from the physical viewpoint. This basically owes to the fact that the physical metric in both theories differ in a time-dependent conformal factor. As a result, an FRW accelerating solution, or FRW instanton, in the scalar-tensor theory may look as a decelerating FRW solution, or a non-instantonic one, in the corresponding modified gravity theory.PACS numbers: 11.25.-w, 95.36.+x, 98.80.-k
We investigate a (super-)renormalizable and ghost-free theory of gravity, showing that under a natural (exponential) ansatz of the form factor and a suitable truncation it can give rise to the Starobinsky inflationary theory in cosmological frameworks, and thus offering a theoretical justification of its origin. We study the corresponding inflationary evolution and we examine the generation of curvature perturbations, adapting the f (R)-like equations in a symmetry-reduced FLRW metric. Furthermore, we analyze how the ultraviolet regime of a simply renormalizable and unitary theory of gravity is also compatible with the Starobinsky action, and hence we show that such a theory could account for an inflationary phase of the Universe in the ultraviolet regime.
The recent Planck data of Cosmic Microwave Background (CMB) temperature anisotropies support the Starobinsky theory in which the quadratic Ricci scalar drives cosmic inflation. We build up a multi-dimensional quantum consisted ultraviolet completion of the model in a phenomenological "bottom-up approach". We present the maximal class of theories compatible with unitarity and (super-)renormalizability or finiteness which reduces to the Starobinsky theory in the low-energy limit. The outcome is a maximal extension of the Krasnikov-Tomboulis-Modesto theory including an extra scalar degree of freedom besides the graviton field. The original theory was afterwards independently discovered by Biswas-Gerwick-Koivisto-Mazumdar starting from first principles. We explicitly show power counting super-renormalizability or finiteness (in odd dimensions) and unitarity (no ghosts) of the theory. Any further extension of the theory is non-unitary confirming the existence of at most one single extra degree of freedom, the scalaron. A mechanism to achieve the Starobinsky theory in string (field) theory is also investigated at the end of the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.