Identification of the potential habitat of European anchovy (Engraulis encrasicolus) at different life stages in relation to environmental conditions is an interesting subject from both ecological and management points of view. For this purpose, acoustic data from different seasons and different parts of the Mediterranean Sea along with satellite environmental and bathymetry data were modelled using generalized additive models. Similarly, egg distribution data from summer ichthyoplankton surveys were used to model potential spawning habitat. Selected models were used to produce maps presenting the probability of anchovy presence (adults, juveniles and eggs) in the entire Mediterranean basin, as a measure of habitat adequacy. Bottom depth and sea surface chlorophyll concentration were the variables found important in all models. Potential anchovy habitats were located over the continental shelf for all life stages examined. An expansion of the potential habitat from the peak spawning (early summer) to the late spawning season (early autumn) was observed. However, the most suitable areas for the presence of anchovy spawners seem to maintain the same size between seasons. Potential juvenile habitats were associated with highly productive inshore waters, being less extended and closer to coast during winter than late autumn. Potential spawning habitat in June and July based on ichthyoplankton surveys overlapped but were wider in extent compared with adult potential habitat from acoustics in the same season. Similarities and dissimilarities between the anchovy habitats as well as comparisons with sardine habitats in the oligotrophic Mediterranean Sea and other ecosystems with higher productivity are discussed.
Identification of potential juvenile grounds of shortlived species such as European sardine (Sardina pilchardus) in relation to the environment is a crucial issue for effective management. In the current work, habitat suitability modelling was applied to acoustic data derived from both the western and eastern part of the Mediterranean Sea. Early summer acoustic data of sardine juveniles were modelled using generalized additive models along with satellite environmental and bathymetry data. Selected models were used to construct maps that exhibit the probability of presence in the study areas, as well as throughout the entire Mediterranean basin, as a measure of habitat adequacy. Areas with high probability of supporting sardine juvenile presence persistently within the study period were identified throughout the Mediterranean Sea. Furthermore, within the study period, a positive relationship was found between suitable habitat extent and the changes in abundance of sardine juveniles in each study area.
The dynamics of fish communities at tropical and sub-tropical rocky reefs are influenced in many cases by predation activity and predator-prey interactions. These processes usually follow specific diel patterns in reef areas with higher rates of these interactions occurring during the crepuscular periods. However, other factors such as habitat complexity and species-specific behavior may alter these patterns, increasing variability in species interactions. A better understanding of the dynamics of these patterns and processes would allow us to manage and monitor fish communities in these productive and vulnerable areas more efficiently. We investigated behavioral changes of predators and prey fish in sub-tropical “live-bottom” (sandstone) reefs at Gray’s Reef National Marine Sanctuary (GRNMS), located 20 nautical miles off the coast of Georgia, USA, using fisheries acoustic methods in association with visual census and direct observation using SCUBA. Changes in co-location and habitat preferences of predators and prey over time throughout the diel cycle were investigated using species distribution models (MAXENT) based on habitat predictors and by means of spatial statistics. The results indicate that predator and prey distribution patterns changed considerably throughout the day. Prey and predator species exhibited complex spatial dynamics and behavior over diel periods, with prey modifying patterns of habitat use and spatial distribution, likely as a response of their interactions with predators. Crepuscular periods were confirmed to be the most active phases in terms of predator-prey interactions and consequently the most variable. The combination of tools and approaches used in this study provided valuable sources of information that support the inferences of predation risk-driven habitat selection of prey in this sub-tropical reef system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.