Las ciudades de América Latina se enfrentan a muchos problemas que las comprometen desde diferentes ángulos como infraestructura, gobernabilidad y medio ambiente. Al mismo tiempo, estas ciudades parecen sufrir de una serie de ciertas condiciones que les dificultan enfrentar efectivamente esos problemas. Desde esta perspectiva, la investigación parte de la hipótesis de que las ciudades de América Latina comparten similitudes importantes para plantearse como objetivo identificar las condiciones transversales que les están dificultando enfrentar sus problemas. Comprender estas dificultades podría ayudar a planificadores y gobiernos a enfrentar la situación y cooperar en el desarrollo de estrategias efectivas. Para alcanzar estos objetivos, la investigación se desarrolló en dos etapas. Primero, se utilizó Caracas como caso de estudio en función de construir un proceso inductivo. Esta experimentación se desarrolló en el marco del “Concurso de Proyectos Participativos en el Espacio Público” organizado en conmemoración de los 450 años de la fundación de Caracas. Dicho espacio sirvió como plataforma de debate para recoger diferentes perspectivas sobre el tema. Segundo, la investigación revisó, analizó y categorizó los diagnósticos realizados por cientos de propuestas de Buenas Prácticas recogidas en las bibliotecas de ONU Habitat. Finalmente, la investigación definió las condiciones comunes que dificultan el desarrollo sostenible de las ciudades de América Latina como: magnitud, discontinuidad, opacidad, fragmentación, urgencia e implementación. Además, el enorme potencial y las oportunidades que caracterizan a estas ciudades terminaron valorándose como un elemento negativo, una suerte de cliché que mantiene una eterna esperanza en el futuro en lugar de motivar las acciones que deberían tomarse en el presente.
Understanding data visualization as one of the foundational skills of the 21st century, this research aimed to define up-to-date guidelines to effectively teach data visualization courses and–from there–developed the first version of a new data visualization course. To do so, it faced the following questions: What is the current role of data visualization in higher education? What have been the main trends in data visualization courses in higher education? What methodologies have been used to teach data visualization courses? What difficulties have been identified in data visualization courses? What recommendations have been offered by previous professors that have taught this kind of courses? Considering this broad set of questions, the research was developed as a scoping review that served to collect hundreds of publications from where 22 peer-reviewed articles published between 2008 and 2021 were finally selected and analyzed. Among the most important results, the research found that data visualization interest in higher education has been growing exponentially and data visualization courses prioritize practical exercises over theoretical content. Some of the most common recommendations synthetized through the review suggested to select topics that the students should find interesting to promote their engagement. Also, several authors recommended to start the visualization process as soon as possible and spend the least possible time on learning tools. Finally, the results of this review should be useful to support and promote new data visualization courses while they were already used to create the first iteration of a graduate and upper-level undergraduate professional elective course on data visualization under the title Visualization Research. The review and assessment of this course will be the next step of this research process.
Recurrent outbreaks of zoonotic infectious diseases highlight the importance of considering the interconnections between human, animal, and environmental health in disease prevention and control. This has given rise to the concept of One Health, which recognizes the interconnectedness of between human and animal health within their ecosystems. As a contribution to the One Health approach, this study aims to develop an indicator system to model the facilitation of the spread of zoonotic diseases. Initially, a literature review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to identify relevant indicators related to One Health. The selected indicators focused on demographics, socioeconomic aspects, interactions between animal and human populations and water bodies, as well as environmental conditions related to air quality and climate. These indicators were characterized using values obtained from the literature or calculated through distance analysis, geoprocessing tasks, and other methods. Subsequently, Multi-Criteria Decision-Making (MCDM) techniques, specifically the Entropy and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) methods, were utilized to combine the indicators and create a composite metric for assessing the spread of zoonotic diseases. The final indicators selected were then tested against recorded zoonoses in the Valencian Community (Spain) for 2021, and a strong positive correlation was identified. Therefore, the proposed indicator system can be valuable in guiding the development of planning strategies that align with the One Health principles. Based on the results achieved, such strategies may prioritize the preservation of natural landscape features to mitigate habitat encroachment, protect land and water resources, and attenuate extreme atmospheric conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.