To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were examined in aqueous solution as a function of peptide concentration, pH, ionic strength, and addition of the secondary structure-inducing solvent trifluoroethanol (TFE). CD spectra showed that increasing concentration, pH, and ionic strength led to aggregation of P1-30; as a consequence, the peptide acquired beta-sheet conformation. In contrast, P11-30 exhibited practically no conformational changes under the same conditions, remaining essentially structureless. Moreover, this peptide did not undergo aggregation. These differences clearly point to the modulating effect of the first 10 hydrophobic residues on the peptides aggregation and conformational properties. In TFE both the first ten hydrophobic peptides acquired alpha-helical conformation, albeit to a different extent, P11-30 displayed lower alpha-helical content. P1-30 presented a larger fraction of residues in alpha-helical conformation in TFE than that found in St II's crystal structure for that portion of the protein. Since TFE mimics the membrane environment, such increase in helical content could also occur upon toxin binding to membranes and represent a step in the mechanism of pore formation. The peptides conformational properties correlated well with their functional behavior. Thus, P1-30 exhibited much higher hemolytic activity than P11-30. In addition, P11-30 was able to block the toxin's hemolytic activity. The size of pores formed in red blood cells by P1-30 was estimated by measuring the permeability to PEGs of different molecular mass. The pore radius (0.95 +/- 0.01 nm) was very similar to that of the pore formed by the toxin. The results demonstrate that the synthetic peptide P1-30 is a good model of St II conformation and function and emphasize the contribution of the toxin's N-terminal region, and, in particular, the hydrophobic residues 1-10 to pore formation.
N-Terminally and internally labeled analogues of the hormones angiotensin (AII, DRVYIHPF) and bradykinin (BK, RPPGFSPFR) were synthesized containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC). TOAC replaced Asp1 (TOAC1-AII) and Val3 (TOAC3-AII) in AII and was inserted prior to Arg1 (TOAC0-BK) and replacing Pro3 (TOAC3-BK) in BK. The peptide conformational properties were examined as a function of trifluoroethanol (TFE) content and pH. Electron paramagnetic resonance spectra were sensitive to both variables and showed that internally labeled analogues yielded rotational correlation times (tauC) considerably larger than N-terminally labeled ones, evincing the greater freedom of motion of the N-terminus. In TFE, tauC increased due to viscosity effects. Calculation of tau(Cpeptide)/tau(CTOAC) ratios indicated that the peptides acquired more folded conformations. Circular dichroism spectra showed that, except for TOAC1-AII in TFE, the N-terminally labeled analogues displayed a conformational behavior similar to that of the parent peptides. In contrast, under all conditions, the TOAC3 derivatives acquired more restricted conformations. Fluorescence spectra of AII and its derivatives were especially sensitive to the ionization of Tyr4. Fluorescence quenching by the nitroxide moiety was much more pronounced for TOAC3-AII. The conformational behavior of the TOAC derivatives bears excellent correlation with their biological activity, since, while the N-terminally labeled peptides were partially active, their internally labeled counterparts were inactive [Nakaie, C. R., et al., Peptides 2002, 23, 65-70]. The data demonstrate that insertion of TOAC in the middle of the peptide chain induces conformational restrictions that lead to loss of backbone flexibility, not allowing the peptides to acquire their receptor-bound conformation.
The interaction of the local anesthetic tetracaine (TTC) with anionic sodium lauryl sulfate (SLS) and zwitterionic 3-(N-hexadecyl-N,N-dimethylammonio)propanesulfonate (HPS) micelles was investigated by fluorescence, spin labeling EPR and small angle X-ray scattering (SAXS). Fluorescence pH titrations allowed the choice of adequate pHs for the EPR and SAXS experiments, where either charged or uncharged TTC would be present. The data also indicated that the anesthetic is located in a less polar environment than its charged counterpart in both micellar systems. EPR spectra evidenced that both anesthetic forms increased molecular organization within the SLS micelle, the cationic form exerting a more pronounced effect. The SAXS data showed that protonated TTC causes an increase in the SLS polar shell thickness, hydration number, and aggregation number, whereas the micellar features are not altered upon incorporation of the uncharged drug. The combined results suggest that the electrostatic interaction between charged TTC and SLS, and the intercalation of the drug in the micellar polar region induce a change in molecular packing with a decrease in the mean cross-sectional area, not observed when the neutral drug sinks more deeply into the micellar hydrophobic domain. In the case of HPS micelles, the EPR spectral changes were small for the charged anesthetic and the SAXS data did not evidence any change in micellar structure, suggesting that this species protrudes more into the aqueous phase due to the lack of electrostatic attractive forces in this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.