The transport industry is currently responsible for around a quarter of GHG emissions worldwide, with a forecasted increased share for the next coming years. The rail industry is one of the most energy efficient and less polluting transport mode. In European Union (E.U.), for instance, the rail sector currently accounts for 1.5% of E.U. transport GHG emissions, with over 8.5% of total market share, while on the United States (U.S.), it accounts for 1.9% of transport GHG emissions (0.6% for freight railroads, with a share of around 40% of long distance freight volumes, in a ton-mile basis). Despite this remarkable environmental and energetic performance, the rail sector is also strongly committed with the compromise of a continuous reduction of its specific GHG emissions, for both the passenger (passenger-km) and freight (tone-km) services, to comply with the world effort, to keep the overall increase in average global temperature below 2 °C, compared to pre-industrial levels. One of the main strategies to reach these ambitious targets is to increase the rail electrification share, with the massive use of electric powertrains, with their inherent improved efficiency and zero local emission performance, compared to the internal combustion engines powered counterparts. The conventional rail electrification, based on a third-rail or overhead line, might be cost and environmental effective for city and inter-city intensively used routes. However, secondary lines and regional routes, lack the required traffic density for conventional electrification, given the high infrastructure costs required. In this context, alternative rail electrification routes, such as the use of Battery Electric Rail (BER) powertrains, have been seen as a promising electrification alternative to comply with rail industry compromises, to reduce its GHG share and efforts to improve energy efficiency, especially in the low density traffic rail segments. It is noteworthy that alternative rail powertrains have launched the debate around traction technology selection for rail fleet renewal, given the average 30 year lifetime of rail equipment, which ultimately require immediate policies and actions to guarantee the long term rail environmental and efficiency targets. In the E.U., BER has been evaluated as alternatives for non electrified low density rail segments (mainly for inter-regional passenger transport), with extensions in the 40–80 km range, given the medium term strategic decision to ban the diesel powertrains, currently used on Diesel Multiple Units (DMU). In the rail freight segment, there are some U.S. preliminary BER initiatives, focused on both shunt/switch locomotives (given their low power and range requirements, compared to road locomotives), and even line-haul locomotives, the later with a limited potential, given their large power and range requirements. However, prior to the widespread use of BER, there are some challenges to be taken up, such as battery technologies improvement (basically the battery chemistry, to meet the harsh rail operational requirements), charging infrastructure, sustainable electricity cost and availability, as well as operational impacts (such as the required charging intervals and the use of battery tender cars on rail productivity). This work presents an unbiased assessment of battery rail technology (for both the passenger and freight sectors), based on the state of the art technical sources, with a focus on battery technology and infrastructure topics, weighted against rail operational requirements. Finally, there are presented some case studies, with BER experiences and prototypes, showing preliminary BER outcomes, followed by the technological and operational challenges to be faced, prior to its commercial use in specific rail niche segments.
Rail (passenger and freight) industry has been under pressure to tackle climate change, local and noise emissions. The current available powertrain technologies to reach the reduced greenhouse (GHG) and zero local emissions demands are electric (fed from the power grid), battery and fuel cell. However, the associated infrastructure costs (electrical equipments and the required overhead catenary infrastructure) have limited the electric option to heavy loaded corridors. Battery electric powered rail vehicles could be another potential option, but their system recharging requirements might significantly limit the system’s availability, thus, impacting the rail vehicle’s on-the-job performance. The recent breakthrough of fuel cell technology in the heavy duty road industry (mainly transit buses), allied with its operational flexibility and environmental performance has opened the way for this groundbreaking technology in the rail industry. Fuel cells generate electricity onboard, using hydrogen or hydrogen rich hydrocarbon fuels. Electricity is, then, stored in batteries or fed directly into a rail vehicle’s high voltage propulsion system. From an operational perspective, fuel cell powered rail vehicles might replace diesel ones in a one-to-one relationship, with the same range and running times, and a more efficient and less noisy powertrain. Moreover, the on-site refilling station is the only additional infrastructure element required, compared to diesel rail vehicle baselines. In short, fuel cell technology might offer a long term local zero emission alternative, fast refuelling (like diesel), flexibility, with self-electrification, integration with a renewable energy source and a quiet operation. Given their outstanding operational and environmental features, several rail market niches might be addressed by the fuel cell technology: i) light rail and trams in urban environments; ii) commuter and regional trains operating on non electrified tracks; iii) shunt or switch locomotives in rail yards (generally located on central portions of large cities or at the crossroads of major rail distribution hubs); iv) underground mining locomotives, and v) line haul locomotives. Since 2002, there has been an intense activity in the global development of fuel cell technology for the rail industry for both passenger and freight markets. This work is supposed to present, based on the compilation of information from a multitude of acknowledged sources, a review of fuel cell rail technology, followed by an overview of fuel cell rail experiences and feasibility studies, highlighting their main outcomes, as well as fuel cell technology potential to offer lower operational costs (fuel and maintenance) and improved performance for the rail industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.