The local geometry, electronic structure, and vibrational features of three vicinal double interstitial defects in diamond, ICIC, ICIN, and ININ, are investigated and compared with those of three "simple" ⟨100⟩ interstitial defects, ICC, ICN, and INN, previously reported by Salustro et al. [Phys. Chem. Chem. Phys. 20, 16615 (2018)], using a similar quantum mechanical approach based on the B3LYP functional constructed from Gaussian-type basis sets, within a supercell scheme, as implemented in the CRYSTAL code. For the first time, the Fermi contact term and hyperfine coupling tensor B of the four open shell structures, ICIC, ICIN, ICC, and ICN, are evaluated and compared with the available experimental EPR data. For the two double interstitial defects, the agreement with experiment is good, whereas that for the single interstitials is found to be very poor, for which a likely reason is the incorrect attribution of the EPR spectra to uncertain atomic details of the microstructure of the samples. The infrared spectra of the three double interstitial defects exhibit at least two peaks that can be used for their characterization.
The Infrared (IR) and Raman spectra of various defects in silicon, containing both oxygen atoms (in the interstitial position, Oi) and a vacancy, are computed at the quantum mechanical level by using a periodic supercell approach based on a hybrid functional (B3LYP), an all-electron Gaussian-type basis set, and the Crystal code. The first of these defects is VO: the oxygen atom, twofold coordinated, saturates the unpaired electrons of two of the four carbon atoms on first neighbors of the vacancy. The two remaining unpaired electrons on the first neighbors of the vacancy can combine to give a triplet (Sz = 1) or a singlet (Sz = 0) state; both states are investigated for the neutral form of the defect, together with the doublet solution, the ground state of the negatively charged defect. Defects containing two, three, and four oxygen atoms, in conjunction with the vacancy V, are also investigated as reported in many experimental papers: VO2 and VOOi (two oxygen atoms inside the vacancy, or one in the vacancy and one in interstitial position between two Si atoms) and VO2Oi and VO22Oi (containing three and four oxygen atoms). This study integrates and complements a recent investigation referring to Oi defects [Gentile et al., J. Chem. Phys. 152, 054502 (2020)]. A general good agreement is observed between the simulated IR spectra and experimental observations referring to VOx (x = 1–4) defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.