The purposes of the study reported here were to evaluate the signalment and clinical presentation in 50 dogs with degenerative myelopathy, to evaluate whether mean survival time was significantly affected by various means of physiotherapy performed in 22 dogs, and to determine whether neurologic status, anatomic localization, or age at onset had an influence on survival time in dogs that received physiotherapy. We found a significant (P < .05) breed predisposition for the German Shepherd Dog, Kuvasz, Hovawart, and Bernese Mountain Dog. Mean age at diagnosis was 9.1 years, and both sexes were affected equally. The anatomic localization of the lesion was spinal cord segment T3-L3 in 56% (n = 28) and L3-S3 in 44% (n = 22) of the dogs. Animals that received intensive (n = 9) physiotherapy had longer (P < .05) survival time (mean 255 days), compared with that for animals with moderate (n = 6; mean 130 days) or no (n = 7; mean 55 days) physiotherapy. In addition, our results indicate that affected dogs which received physiotherapy remained ambulatory longer than did animals that did not receive physical treatment.
Carbocyanine dyes have a long-standing tradition in fluorescence imaging and spectroscopy, due to their photostability and large spectral separation between individual dye species. Herein, we explore the versatility of cyanine dyes to probe the dynamics of nucleic acids and we report on the interrelation of fluorophores, RNA, and metal ions, namely K and Mg. Photophysical parameters including the fluorescence lifetime, quantum yield and dynamic anisotropy are monitored as a function of the nucleic acid composition, conformation, and metal ion abundance. Occasional excursions to a non-fluorescent cis-state hint at the remarkable sensitivity of carbocyanines to their local environment. Comparison of time-correlated single photon experiments with all-atom molecular dynamics simulations demonstrate that the propensity of photoisomerization is dictated by sterical constraints imposed on the fluorophore. Structural features in the vicinity of the dye play a crucial role in RNA recognition and have far-reaching implications on the mobility of the fluorescent probe. An atomic level description of the mutual interactions will ultimately benefit the quantitative interpretation of single-molecule FRET measurements on large RNA systems.
Labeling of long RNA molecules in a site-specific yet generally applicable manner is integral to many spectroscopic applications. Here we present a novel covalent labeling approach that is site-specific and scalable to long intricately folded RNAs. In this approach, a custom-designed DNA strand that hybridizes to the RNA guides a reactive group to target a preselected adenine residue. The functionalized nucleotide along with the concomitantly oxidized 3′-terminus can subsequently be conjugated to two different fluorophores via bio-orthogonal chemistry. We validate this modular labeling platform using a regulatory RNA of 275 nucleotides, the btuB riboswitch of Escherichia coli, demonstrate its general applicability by modifying a base within a duplex, and show its site-selectivity in targeting a pair of adjacent adenines. Native folding and function of the RNA is confirmed on the single-molecule level by using FRET as a sensor to visualize and characterize the conformational equilibrium of the riboswitch upon binding of its cofactor adenosylcobalamin. The presented labeling strategy overcomes size and site constraints that have hampered routine production of labeled RNA that are beyond 200 nt in length.
The purposes of the study reported here were to evaluate the signalment and clinical presentation in 50 dogs with degenerative myelopathy, to evaluate whether mean survival time was significantly affected by various means of physiotherapy performed in 22 dogs, and to determine whether neurologic status, anatomic localization, or age at onset had an influence on survival time in dogs that received physiotherapy. We found a significant (P , .05) breed predisposition for the German Shepherd Dog, Kuvasz, Hovawart, and Bernese Mountain Dog. Mean age at diagnosis was 9.1 years, and both sexes were affected equally. The anatomic localization of the lesion was spinal cord segment T3-L3 in 56% (n 5 28) and L3-S3 in 44% (n 5 22) of the dogs. Animals that received intensive (n 5 9) physiotherapy had longer (P , .05) survival time (mean 255 days), compared with that for animals with moderate (n 5 6; mean 130 days) or no (n 5 7; mean 55 days) physiotherapy. In addition, our results indicate that affected dogs which received physiotherapy remained ambulatory longer than did animals that did not receive physical treatment.
The fidelity of group II intron self-splicing and retrohoming relies on long-range tertiary interactions between the intron and its flanking exons. By single-molecule FRET, we explore the binding kinetics of the most important, structurally conserved contact, the exon and intron binding site 1 (EBS1/IBS1). A comparison of RNA-RNA and RNA-DNA hybrid contacts identifies transient metal ion binding as a major source of kinetic heterogeneity which typically appears in the form of degenerate FRET states. Molecular dynamics simulations suggest a structural link between heterogeneity and the sugar conformation at the exonintron binding interface. While Mg 2+ ions lock the exon in place and give rise to long dwell times in the exon bound FRET state, sugar puckering alleviates this structural rigidity and likely promotes exon release. The interplay of sugar puckering and metal ion coordination may be an important mechanism to balance binding affinities of RNA and DNA interactions in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.