A FitzHugh-Rinzel type system is analyzed. The system, represented by three dimensional equations is reduced to a nonlinear integro differential equation and the fundamental solution H(x, t) is explicitly determined. The initial value problem in all of the space is analyzed and the solution is expressed by means of an integral equation involving function H(x, t). Moreover, adding an extra term, explicit solutions are achieved.
Purpose - The purpose of this paper is to present an efficient return mapping algorithm for elastoplastic constitutive problems of ductile metals with an exact closed form solution of the local constitutive problem in the small strain regime. A Newton Raphson iterative method is adopted for the solution of the boundary value problem.\ud
\ud
Design/methodology/approach - An efficient return mapping algorithm is illustrated which is based on an elastic predictor and a plastic corrector scheme resulting in an implicit and accurate numerical integration method. Nonlinear kinematic hardening rules and linear isotropic hardening rules are used to describe the components of the hardening variables. In the adopted algorithmic approach the solution of the local constitutive equations reduces to only one straightforward nonlinear scalar equation.\ud
\ud
Findings - The presented algorithmic scheme naturally leads to a particularly simple form of the nonlinear scalar equation which ultimately scales down to an algebraic (polynomial) equation with a single variable. The straightforwardness of the present approach allows to find the analytical solution of the algebraic equation in a closed form. Further, the consistent tangent operator is derived as associated with the proposed algorithmic scheme and it is shown that the proposed computational procedure ensures a quadratic rate of asymptotic convergence when used with a Newton Raphson iterative method for the global solution procedure.\ud
\ud
Originality/value - In the present approach the solution of the algebraic nonlinear equation is found in a closed form and accordingly no iterative method is required to solve the problem of the local constitutive equations. The computational procedure ensures a quadratic rate of asymptotic convergence for the global solution procedure typical of computationally efficient solution schemes. In the paper it is shown that the proposed algorithmic scheme provides an efficient and robust computational solution procedure for elastoplasticity boundary value problems. Numerical examples and computational results are reported which illustrate the effectiveness and robustness of the adopted integration algorithm for the finite element analysis of elastoplastic structures also under elaborate loading conditions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.