Tropical river basins are experiencing major hydrological alterations as a result of climate variability and deforestation. These drivers of flow changes are often difficult to isolate in large basins based on either observations or experiments; however, combining these methods with numerical models can help identify the contribution of climate and deforestation to hydrological alterations. This paper presents a study carried out in the Tapajόs River (Brazil), a 477,000 km 2 basin in South-eastern Amazonia, in which we analysed the role of annual land cover change on daily river flows. Analysis of observed spatial and temporal trends in rainfall, forest cover, and river flow metrics for 1976 to 2008 indicates a significant shortening of the wet season and reduction in river flows through most of the basin despite no significant trend in annual precipitation. Coincident with seasonal trends over the past 4 decades, over 35% of the original forest (140,000 out of 400,000 km 2 ) was cleared. In order to determine the effects of land clearing and rainfall variability to trends in river flows, we conducted hindcast simulations with ED2 + R, a terrestrial biosphere model incorporating fine scale ecosystem heterogeneity arising from annual land-use change and linked to a flow routing scheme. The simulations indicated basin-wide increases in dry season flows caused by land cover transitions beginning in the early 1990s when forest cover dropped to 80% of its original extent. Simulations of historical potential vegetation in the absence of land cover transitions indicate that reduction in rainfall during the dry season (mean of −9 mm per month) would have had an opposite and larger magnitude effect than deforestation (maximum of +4 mm/ month), leading to the overall net negative trend in river flows. In light of the expected increase in future climate variability and water infrastructure development in the Amazon and other tropical basins, this study presents an approach for analysing how multiple drivers of change are altering regional hydrology and water resources management.
Abstract. Land surface models are excellent tools for studying how climate change and land use affect surface hydrology. However, in order to assess the impacts of Earth processes on river flows, simulated changes in runoff need to be routed through the landscape. In this technical note, we describe the integration of the Ecosystem Demography (ED2) model with a hydrological routing scheme. The purpose of the study was to create a tool capable of incorporating to hydrological predictions the terrestrial ecosystem responses to climate, carbon dioxide, and land-use change, as simulated with terrestrial biosphere models. The resulting ED2+R model calculates the lateral routing of surface and subsurface runoff resulting from the terrestrial biosphere models' vertical water balance in order to determine spatiotemporal patterns of river flows within the simulated region. We evaluated the ED2+R model in the Tapajós, a 476 674 km2 river basin in the southeastern Amazon, Brazil. The results showed that the integration of ED2 with the lateral routing scheme results in an adequate representation (Nash–Sutcliffe efficiency up to 0.76, Kling–Gupta efficiency up to 0.86, Pearson's R up to 0.88, and volume ratio up to 1.06) of daily to decadal river flow dynamics in the Tapajós. These results are a consistent step forward with respect to the no river representation common among terrestrial biosphere models, such as the initial version of ED2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.