Social isolation has adverse effects on mental health, physical exercise, and dietary habits. This longitudinal observational study aimed to investigate the effects of mood states and exercise on nutritional choices, on 176 college students (92 males, 84 females; 23 ± 4 years old) during the COVID-19 lockdown. During 21 days, nutrition and exercise were daily monitored, and the mood states assessed. A factor analysis was used to reduce the number of nutritional variables collected. The relationships between exercise, mood and nutrition were investigated using a multivariate general linear model and a mediation model. Seven factors were found, reflecting different nutritional choices. Exercise was positively associated with fruit, vegetables and fish consumption (p = 0.004). Depression and quality of life were, directly and inversely, associated with cereals, legumes (p = 0.005; p = 0.004) and low-fat meat intake (p = 0.040; p = 0.004). Exercise mediated the effect of mood states on fruit, vegetables and fish consumption, respectively, accounting for 4.2% and 1.8% of the total variance. Poorer mood states possibly led to unhealthy dietary habits, which can themselves be linked to negative mood levels. Exercise led to healthier nutritional choices, and mediating the effects of mood states, it might represent a key measure in uncommon situations, such as home-confinement.
The adult gut microbiota contains trillions of microorganisms of thousands of different species. Only one third of gut microbiota are common to most people; the rest are specific and contribute to enhancing genetic variation. Gut microorganisms significantly affect host nutrition, metabolic function, immune system, and redox levels, and may be modulated by several environmental conditions, including physical activity and exercise. Microbiota also act like an endocrine organ and is sensitive to the homeostatic and physiological changes associated with training; in turn, exercise has been demonstrated to increase microbiota diversity, consequently improving the metabolic profile and immunological responses. On the other side, adaptation to exercise might be influenced by the individual gut microbiota that regulates the energetic balance and participates to the control of inflammatory, redox, and hydration status. Intense endurance exercise causes physiological and biochemical demands, and requires adequate measures to counteract oxidative stress, intestinal permeability, electrolyte imbalance, glycogen depletion, frequent upper respiratory tract infections, systemic inflammation and immune responses. Microbiota could be an important tool to improve overall general health, performance, and energy availability while controlling inflammation and redox levels in endurance athletes. The relationship among gut microbiota, general health, training adaptation and performance, along with a focus on sport supplements which are known to exert some influence on the microbiota, will be discussed.
In 1995 a clone bank of elms from across Italy was created at Antella (Florence, I) under a European Union project. In 1998 an experimental planting of some clones from this source was established in Antella together with material from a similar clone bank in France and two reference clones: Commelin (relatively susceptible) and Lobel (relatively resistant). In May 2001, the elms were inoculated with Ophiostoma novo-ulmi and disease development was assessed throughout that summer and the next. Significant differences in susceptibility were found between taxonomic groups, with putative natural hybrids between Ulmus minor and Ulmus pumila being the most resistant and Ulmus glabra the most susceptible. Significant differences were also found within U. minor, some clones being as resistant as Lobel. For U. minor, a statistically significant relation was found with latitude, southerly clones showing less disease than more northerly ones. Relationships were also found between disease severity and times to bud burst, these relationships applying both to the different taxonomic groups and within U. minor. Relationships between growth increment and disease severity were inconsistent. These results are discussed in relation to the intrinsic genetically-controlled differences that exist between elms and to differences in susceptibility that occur as the growing season proceeds and as a consequence of environmental influences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.