The splicing factor SF3B1 is the most frequently mutated gene in the myelodysplastic syndromes (MDS), and is strongly associated with the presence of ring sideroblasts (RS). We have performed a systematic analysis of cryptic splicing abnormalities from RNA-sequencing data on hematopoietic stem cells (HSCs) of SF3B1-mutant MDS cases with RS. Aberrant splicing events in many downstream target genes were identified and cryptic 3’ splice site usage was a frequent event in SF3B1-mutant MDS. The iron transporter ABCB7 is a well-recognized candidate gene showing marked downregulation in MDS with RS. Our analysis unveiled aberrant ABCB7 splicing, due to usage of an alternative 3’ splice site in MDS patient samples, giving rise to a premature termination codon in the ABCB7 mRNA. Treatment of cultured SF3B1-mutant MDS erythroblasts and a CRISPR/Cas9-generated SF3B1-mutant cell line with the nonsense-mediated decay (NMD) inhibitor cycloheximide, showed that the aberrantly spliced ABCB7 transcript is targeted by NMD. We describe cryptic splicing events in the HSCs of SF3B1-mutant MDS, and our data support a model in which NMD-induced downregulation of the iron exporter ABCB7 mRNA transcript resulting from aberrant splicing caused by mutant SF3B1 underlies the increased mitochondrial iron accumulation found in MDS patients with RS.
AbstractmRNA splicing and export plays a key role in the regulation of gene expression, with recent evidence suggesting an additional layer of regulation of gene expression and cellular function through the selective splicing and export of genes within specific pathways. Here we describe a role for the RNA processing factors THRAP3 and BCLAF1 in the regulation of the cellular DNA damage response (DDR) pathway, a key pathway involved in the maintenance of genomic stability and the prevention of oncogenic transformation. We show that loss of THRAP3 and/or BCLAF1 leads to sensitivity to DNA damaging agents, defective DNA repair and genomic instability. Additionally, we demonstrate that this phenotype can be at least partially explained by the role of THRAP3 and BCLAF1 in the selective mRNA splicing and export of transcripts encoding key DDR proteins, including the ATM kinase. Moreover, we show that cancer associated mutations within THRAP3 result in deregulated processing of THRAP3/BCLAF1-regulated transcripts and consequently defective DNA repair. Taken together, these results suggest that THRAP3 and BCLAF1 mutant tumors may be promising targets for DNA damaging chemotherapy.
In the present study survival responses were determined in cells with differing radiosensitivity, specifically primary fibroblast (AG0-1522B), human breast cancer (MDA-MB-231), human prostate cancer (DU-145) and human glioma (T98G) cells, after exposure to modulated radiation fields delivered by shielding 50% of the tissue culture flask. A significant decrease (P < 0.05) in cell survival was observed in the shielded area, outside the primary treatment field (out-of-field), that was lower than predicted when compared to uniform exposures fitted to the linear-quadratic model. Cellular radiosensitivity was demonstrated to be an important factor in the level of response for both the in- and out-of-field regions. These responses were shown to be dependent on secretion-mediated intercellular communication, because inhibition of cellular secreted factors between the in- and out-of-field regions abrogated the response. Out-of-field cell survival was shown to increase after pretreatment of cells with agents known to inhibit factors involved in mediating radiation-induced bystander signaling (aminoguanidine, DMSO or cPTIO). These data illustrate a significant decrease in survival out-of-field, dependent upon intercellular communication, in several cell lines with varying radiosensitivity after exposure to a modulated radiation field. This study provides further evidence for the importance of intercellular signaling in modulated exposures, where dose gradients are present, and may inform the refinement of established radiobiological models to facilitate the optimization of advanced radiotherapy treatment plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.