Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.
Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author’s group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications.
Remotely sensed data can provide the basis for timely and efficient building damage maps that are of fundamental importance to support the response activities following disaster events. However, the generation of these maps continues to be mainly based on the manual extraction of relevant information in operational frameworks. Considering the identification of visible structural damages caused by earthquakes and explosions, several recent works have shown that Convolutional Neural Networks (CNN) outperform traditional methods. However, the limited availability of publicly available image datasets depicting structural disaster damages, and the wide variety of sensors and spatial resolution used for these acquisitions (from space, aerial and UAV platforms), have limited the clarity of how these networks can effectively serve First Responder needs and emergency mapping service requirements. In this paper, an advanced CNN for visible structural damage detection is tested to shed some light on what deep learning networks can currently deliver, and its adoption in realistic operational conditions after earthquakes and explosions is critically discussed. The heterogeneous and large datasets collected by the authors covering different locations, spatial resolutions and platforms were used to assess the network performances in terms of transfer learning with specific regard to geographical transferability of the trained network to imagery acquired in different locations. The computational time needed to deliver these maps is also assessed. Results show that quality metrics are influenced by the composition of training samples used in the network. To promote their wider use, three pre-trained networks—optimized for satellite, airborne and UAV image spatial resolutions and viewing angles—are made freely available to the scientific community.
In recent years, due to an increasing number of extreme meteorological events potentially related to climate change, a growing attention has been paid to the operational use of satellite remote sensing applied to emergency management applications. This is mainly due to the large and timely availability of different types of remotely sensed data-as well as geospatial information acquired in the field-which may be potentially exploited in the different phases of the disaster management cycle. This paper is mainly focused on the use of remotely sensed data in emergency mapping applications supporting the crisis response phase, including natural disasters as well as humanitarian crisis. The main relevant initiatives related to emergency mapping operational services will be briefly described. For the main disaster types the suitable imagery, their relevant technical features and the main processing techniques generally adopted in an operational framework will be described. Known limitations of a satellite-based approach will be described and potential complementary geomatics techniques (including emerging technologies) to overcome the aforementioned limits will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.