A b s t r a c tIn cancer cachexia, the role of nitric oxide (NO) in the central nervous system remains unclear. Cerebellar degeneration has been reported in cancer patients, but the participation of NO has not been studied. Thus, this study investigated the mechanism of oxidative cerebellar injury in a time-course cancer cachexia experimental model. The cachexia index is progressive and evident during the evolution of the tumor. Nitric oxide and lipid hydroperoxidation quantification was performed using a very sensitive and precise chemiluminescence method, which showed that both analyzed parameters were increased after tumor implantation. In the day 5 group, NO was significantly increased, and this experimental time was chosen to treat the rats with the NO inhibitors N-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine (AG). When treated with NO inhibitors, a significant decrease in both NO
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.