The physical interpretation and eventual fate of gravitational singularities in a theory surpassing classical general relativity are puzzling questions that have generated a great deal of interest among various quantum gravity approaches. In the context of loop quantum gravity (LQG), one of the major candidates for a non-perturbative background-independent quantisation of general relativity, considerable effort has been devoted to construct effective models in which these questions can be studied. In these models, classical singularities are replaced by a "bounce" induced by quantum geometry corrections. Undesirable features may arise however depending on the details of the model. In this paper, we focus on Schwarzschild black holes and propose a new effective quantum theory based on polymerisation of new canonical phase space variables inspired by those successful in loop quantum cosmology. The quantum corrected spacetime resulting from the solutions of the effective dynamics is characterised by infinitely many pairs of trapped and anti-trapped regions connected via a space-like transition surface replacing the central singularity. Quantum effects become relevant at a unique mass independent curvature scale, while they become negligible in the low curvature region near the horizon. The effective quantum metric describes also the exterior regions and asymptotically classical Schwarzschild geometry is recovered. We however find that physically acceptable solutions require us to select a certain subset of initial conditions, corresponding to a specific mass (de-)amplification after the bounce. We also sketch the corresponding quantum theory and explicitly compute the kernel of the Hamiltonian constraint operator. i + i J + i + J J J + i BH WH b = b(rT ) ,Ũ +Ṽ = ⇡/2 b = b(rT ) ,Ũ +Ṽ = ⇡/2 III IV
N Bodendorfer et al on initial conditions. Quantum effects cause a bound of a unique Kretschmann curvature scale, independently of the relation between the two masses.
In effective models of loop quantum gravity, the onset of quantum effects is controlled by a socalled polymerisation scale. It is sometimes necessary to make this scale phase space dependent in order to obtain sensible physics. A particularly interesting choice recently used to study quantum corrected black hole spacetimes takes the generator of time translations itself to set the scale. We review this idea, point out errors in recent treatments, and show how to fix them in principle.
The so-called q-z-Rényi Relative Entropies provide a huge two-parameter family of relative entropies which includes almost all well-known examples of quantum relative entropies for suitable values of the parameters. In this paper we consider a log-regularized version of this family and use it as a family of potential functions to generate covariant (0, 2) symmetric tensors on the space of invertible quantum states in finite dimensions. The geometric formalism developed here allows us to obtain the explicit expressions of such tensor fields in terms of a basis of globally defined differential forms on a suitable unfolding space without the need to introduce a specific set of coordinates. To make the reader acquainted with the intrinsic formalism introduced, we first perform the computation for the qubit case, and then, we extend the computation of the metric-like tensors to a generic n-level system. By suitably varying the parameters q and z, we are able to recover well-known examples of quantum metric tensors that, in our treatment, appear written in terms of globally 1 arXiv:1711.09769v2 [quant-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.