Several reports have described a beneficial effect of Mesenchymal Stromal Cells (MSCs) and of their secreted extracellular vesicles (EVs) in mice with experimental colitis. However, the effects of the two treatments have not been thoroughly compared in this model. Here, we compared the effects of MSCs and of MSC-EV administration in mice with colitis induced by dextran sulfate sodium (DSS). Since cytokine conditioning was reported to enhance the immune modulatory activity of MSCs, the cells were kept either under standard culture conditions (naïve, nMSCs) or primed with a cocktail of pro-inflammatory cytokines, including IL1β, IL6 and TNFα (induced, iMSCs). In our experimental conditions, nMSCs and iMSCs administration resulted in both clinical and histological worsening and was associated with pro-inflammatory polarization of intestinal macrophages. However, mice treated with iEVs showed clinico-pathological improvement, decreased intestinal fibrosis and angiogenesis and a striking increase in intestinal expression of Mucin 5ac, suggesting improved epithelial function. Moreover, treatment with iEVs resulted in the polarization of intestinal macrophages towards and anti-inflammatory phenotype and in an increased Treg/Teff ratio at the level of the intestinal lymph node. Collectively, these data confirm that MSCs can behave either as anti- or as pro-inflammatory agents depending on the host environment. In contrast, EVs showed a beneficial effect, suggesting a more predictable behavior, a safer therapeutic profile and a higher therapeutic efficacy with respect to their cells of origin.
Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) are extensively studied as therapeutic tools. Evaluation of their biodistribution is fundamental to understanding MSC-EVs’ impact on target organs. In our work, MSC-EVs were initially labeled with DiR, a fluorescent lipophilic dye, and administered to BALB/c mice (2.00 × 1010 EV/mice) through the following routes: intravenous (IV), intratracheal (IT) and intranasal (IN). DiR-labeled MSC-EVs were monitored immediately after injection, and after 3 and 24 hours (h). Whole-body analysis, 3 h after IV injection, showed an accumulation of MSC-EVs in the mice abdominal region, compared to IT and IN, where EVs mainly localized at the levels of the chest and brain region, respectively. After 24 h, EV-injected mice retained a stronger positivity in the same regions identified after 3 h from injection. The analyses of isolated organs confirmed the accumulation of EVs in the spleen and liver after IV administration. Twenty-four hours after the IT injection of MSC-EVs, a stronger positivity was detected selectively in the isolated lungs, while for IN, the signal was confined to the brain. In conclusion, these results show that local administration of EVs can increase their concentration in selective organs, limiting their systemic biodistribution and possibly the extra-organ effects. Biodistribution studies can help in the selection of the most appropriate way of administration of MSC-EVs for the treatment of different diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.