The coronavirus 2019 disease (COVID-19) is characterised by a heterogeneous clinical presentation, a complex pathophysiology and a wide range of imaging findings, depending on disease severity and time course. We conducted a retrospective evaluation of hospitalized patients with proven SARS-CoV-2 infection, clinical signs of COVID-19 and computed tomography (CT) scan-proven pulmonary involvement, in order to identify relationships between clinical, serological, imaging data and disease outcomes in patients with COVID-19. Clinical and serological records of patients admitted to two COVID-19 Units of the Abruzzo region in Italy with proven SARS-CoV-2 pulmonary involvement investigated with CT scan, assessed at the time of admission to the hospital, were retrospectively evaluated. Sixty-one patients (22 females and 39 males) of median age 65 years were enrolled. Fifty-six patients were discharged while death occurred in 5 patients. None of the lung abnormalities detected by CT was different between discharged and deceased patients. No differences were observed in the features and extent of pulmonary involvement according to age and gender. Logistic regression analysis with age and gender as covariates demonstrated that ferritin levels over the 25th percentile were associated with the involvement of all 5 pulmonary lobes (OR = 14.5, 95% CI 2.3–90.9, p = 0.004), the presence of septal thickening (OR = 8.2, 95% CI 1.6–40.9, p = 0.011) and the presence of mediastinal lymph node enlargement (OR = 12.0, 95% CI 1.1–127.5, p = 0.039) independently of age and gender. We demonstrated that ferritin levels over the 25th percentile are associated with a more severe pulmonary involvement, independently of age and gender and not associated with disease outcomes. The identification of reliable biomarkers in patients with COVID-19 may help guiding clinical decision, tailoring therapeutic approaches and ultimately improving the care and prognosis of patients with this disease.
Three-dimensional (3D) conformal radiation therapy (CRT) and stereotactic body radiation therapy (SBRT) are designed to deliver the maximum therapeutic radiation dose to the tumor, allowing improved local disease control, while minimizing irradiation of surrounding normal structures. The complex configuration of the multiple beams that deliver the radiation dose to the tumor in 3D CRT and SBRT produces patterns of lung injury that differ in location and extent from those seen after conventional radiation therapy. Radiation-induced changes in lung tissue after 3D CRT and SBRT occur within the radiation portals. The imaging appearance of irradiated tissues varies according to the time elapsed after the completion of therapy, with acute-phase changes of radiation pneumonitis represented by ground-glass opacities and consolidation and with late-phase changes of radiation fibrosis manifesting as volume loss, consolidation, and traction bronchiectasis. Knowledge of treatment timelines and radiation field locations, as well as familiarity with the full spectrum of possible radiation-induced lung injuries after 3D CRT and SBRT, is important to correctly interpret the abnormalities that may be seen at computed tomography (CT). Differential diagnoses in this context might include infections, lymphangitic carcinomatosis, local recurrence of malignancy, and radiation-induced tumors. The integration of morphologic information obtained at CT with metabolic information obtained at positron emission tomography is helpful in distinguishing radiation-induced parenchymal abnormalities from residual, recurrent, and new cancers. Thus, multimodality follow-up imaging may lead to substantial changes in disease management.
Aim. To systematically review the role of positron emission tomography (PET) with fluorine-18-fluorodeoxyglucose (FDG) in patients with neurofibromatosis type 1 (NF1). Methods. A comprehensive literature search of published studies regarding FDG-PET and PET/CT in patients with NF1 was performed. No beginning date limit and language restriction were used; the search was updated until December 2011. Only those studies or subsets in studies including whole-body FDG-PET or PET/CT scans performed in patients with NF1 were included. Results. We identified 12 studies including 352 NF1 patients. Qualitative evaluation was performed in about half of the studies and semiquantitative analysis, mainly based on different values of SUV cutoff, in the others. Most of the studies evaluated the role of FDG-PET for differentiating benign from malignant peripheral nerve sheath tumors (MPNSTs). Malignant lesions were detected with a sensitivity ranging between 100% and 89%, but with lower specificity, ranging between 100% and 72%. Moreover, FDG-PET seems to be an important imaging modality for predicting the progression to MPNST and the outcome in patients with MPNST. Two studies evaluated the role of FDG-PET in pediatric patients with NF1. Conclusions. FDG-PET and PET/CT are useful methods to identify malignant change in neurogenic tumors in NF1 and to discriminate malignant from benign neurogenic lesions.
Several cardiovascular abnormalities can be reliably identified on standard chest CT. Yet, they are often under-reported, even when they might be relevant to the patient's work-up.
(1) Mycobacteriosis commonly causes increased ¹⁸F-FDG uptake; therefore, positive ¹⁸F-FDG-PET results should be interpreted with caution in differentiating benign from malignant abnormalities. (2) ¹⁸F-FDG-PET and PET/CT are potentially useful in detecting sites of Mycobacterium infection. (3) Dual-phase ¹⁸F-FDG-PET is not useful for the differential diagnosis between malignant lesions and sites of Mycobacterium infection. (4) ¹⁸F-FDG-PET and PET/CT are useful for the evaluation of disease activity and in monitoring response to therapy in patients with mycobacteriosis. (5) Dual-tracer PET and PET/CT are potentially useful for presumptive diagnosis of solitary pulmonary nodules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.