Objective Sporadic Creutzfeldt–Jakob disease (sCJD) comprises several subtypes as defined by genetic and prion protein characteristics, which are associated with distinct clinical and pathological phenotypes. To date, no clinical test can reliably diagnose the subtype. We established two procedures for the antemortem diagnosis of sCJD subtype using diffusion magnetic resonance imaging (MRI). Methods MRI of 1,458 patients referred to the National Prion Disease Pathology Surveillance Center were collected through its consultation service. One neuroradiologist blind to the diagnosis scored 12 brain regions and generated a lesion profile for each MRI scan. We selected 487 patients with autopsy‐confirmed diagnosis of “pure” sCJD subtype and at least one positive diffusion MRI examination. We designed and tested two data‐driven procedures for subtype diagnosis: the first procedure—prion subtype classification algorithm with MRI (PriSCA_MRI)—uses only MRI examinations; the second—PriSCA_MRI + Gen—includes knowledge of the prion protein codon 129 genotype, a major determinant of sCJD subtypes. Both procedures were tested on the first MRI and the last MRI follow‐up. Results PriSCA_MRI classified the 3 most prevalent subtypes with 82% accuracy. PriSCA_MRI + Gen raised the accuracy to 89% and identified all subtypes. Individually, the 2 most prevalent sCJD subtypes, MM1 and VV2, were diagnosed with sensitivities up to 95 and 97%, respectively. The performances of both procedures did not change in 168 patients with longitudinal MRI studies when the last examination was used. Interpretation This study provides the first practical algorithms for antemortem diagnosis of sCJD subtypes. MRI diagnosis of subtype is likely to be attainable at early disease stages to prognosticate clinical course and design future therapeutic trials. ANN NEUROL 2021;89:560–572
Considering all guidelines, only one had a "low" overall score, while half of them were rated as of "high" quality. Future guidelines might take this into account to improve clinical applicability.
This study aimed to evaluate the diagnostic performance of arterial spin labelling (ASL) in grading of adult gliomas. Eighteen studies matched the inclusion criteria and were included after systematic searches through EMBASE and MEDLINE databases. The quality of the included studies was assessed utilizing Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). The quantitative values were extracted and a meta-analysis was subsequently based on a random-effect model with forest plot and joint sensitivity and specificity modelling. Hierarchical summary receiver operating characteristic (HROC) curve analysis was also conducted. The absolute tumour blood flow (TBF) values can differentiate high-grade gliomas (HGGs) from low-grade gliomas (LGGs) and grade II from grade IV tumours. However, it lacked the capacity to differentiate grade II from grade III tumours and grade III from grade IV tumours. In contrast, the relative TBF (rTBF) is effective in differentiating HGG from LGG and in glioma grading. The maximum rTBF (rTBFmax) demonstrated the best results in glioma grading. These results were also reflected in the sensitivity/specificity analysis in which the rTBFmax showed the highest discrimination performance in glioma grading. The estimated effect size for the rTBF was approximately similar between HGGs and LGGs, and grade II and grade III tumours, (–1.46 (–2.00, –0.91), p-value < 0.001), (–1.39 (–1.89, –0.89), p-value < 0.001), respectively; while it exhibited smaller effect size between grade III and grade IV (–1.05 (–1.82, –0.27)), p < 0.05). Sensitivity and specificity analysis replicate these results as well. This meta-analysis suggests that ASL is useful for glioma grading, especially when considering the rTBFmax parameter.
BackgroundThe contrast agent (CA) dose for abdominal computed tomography (CT) is typically based on patient total body weight (TBW), ignoring adipose tissue distribution. We report on our experience of dosing according to the lean body weight (LBW).MethodsAfter Ethics Committee approval, we retrospectively screened 219 consecutive patients, 18 being excluded for not matching the inclusion criteria. Thus, 201 were analysed (106 males), all undergoing a contrast-enhanced abdominal CT with iopamidol (370 mgI/mL) or iomeprol (400 mgI/mL). LBW was estimated using validated formulas. Liver contrast-enhancement (CEL) was measured. Data were reported as mean ± standard deviation. Pearson correlation coefficient, ANOVA, and the Levene test were used.ResultsMean age was 66 ± 13 years, TBW 72 ± 15 kg, LBW 53 ± 11 kg, and LBW/TBW ratio 74 ± 8%; body mass index was 26 ± 5 kg/m2, with 9 underweight patients (4%), 82 normal weight (41%), 76 overweight (38%), and 34 obese (17%). The administered CA dose was 0.46 ± 0.06 gI/kg of TBW, corresponding to 0.63 ± 0.09 gI/kg of LBW. A negative correlation was found between TBW and CA dose (r = -0.683, p < 0.001). CEL (Hounsfield units) was 51 ± 18 in underweight patients, 44 ± 8 in normal weight, 42 ± 9 in overweight, and 40 ± 6 in obese, with a significant difference for both mean (p = 0.004) and variance (p < 0.001). A low but significant positive correlation was found between CEL and CA dose in gI per TBW (r = 0.371, p < 0.001) or per LBW (r = 0.333, p < 0.001).ConclusionsThe injected CA dose was highly variable, with obese patients receiving a lower dose than underweight patients, as a radiologist-driven ‘compensation effect’. Diagnostic abdomen CT examinations may be obtained using 0.63 gI/kg of LBW.
Objectives Iodinated contrast media (ICM) could be more appropriately dosed on patient lean body weight (LBW) than on total body weight (TBW). Methods After Ethics Committee approval, trial registration NCT03384979, patients aged ≥ 18 years scheduled for multiphasic abdominal CT were randomised for ICM dose to LBW group (0.63 gI/kg of LBW) or TBW group (0.44 gI/kg of TBW). Abdominal 64-row CT was performed using 120 kVp, 100–200 mAs, rotation time 0.5 s, pitch 1, Iopamidol (370 mgI/mL), and flow rate 3 mL/s. Levene, Mann–Whitney U, and χ2 tests were used. The primary endpoint was liver contrast enhancement (LCE). Results Of 335 enrolled patients, 17 were screening failures; 44 dropped out after randomisation; 274 patients were analysed (133 LBW group, 141 TBW group). The median age of LBW group (66 years) was slightly lower than that of TBW group (70 years). Although the median ICM-injected volume was comparable between groups, its variability was larger in the former (interquartile range 27 mL versus 21 mL, p = 0.01). The same was for unenhanced liver density (IQR 10 versus 7 HU) (p = 0.02). Median LCE was 40 (35–46) HU in the LBW group and 40 (35–44) HU in the TBW group, without significant difference for median (p = 0.41) and variability (p = 0.23). Suboptimal LCE (< 40 HU) was found in 64/133 (48%) patients in the LBW group and 69/141 (49%) in the TBW group, but no examination needed repeating. Conclusions The calculation of the ICM volume to be administered for abdominal CT based on the LBW does not imply a more consistent LCE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.