In this paper we present a theoretical analysis to understand sparse filtering, a recent and effective algorithm for unsupervised learning. The aim of this research is not to show whether or how well sparse filtering works, but to understand why and when sparse filtering does work. We provide a thorough theoretical analysis of sparse filtering and its properties, and further offer an experimental validation of the main outcomes of our theoretical analysis. We show that sparse filtering works by explicitly maximizing the entropy of the learned representations through the maximization of the proxy of sparsity, and by implicitly preserving mutual information between original and learned representations through the constraint of preserving a structure of the data. Specifically, we show that the sparse filtering algorithm implemented using an absolute-value non-linearity determines the preservation of a data structure defined by relations of neighborhoodness under the cosine distance. Furthermore, we empirically validate our theoretical results with artificial and real data sets, and we apply our theoretical understanding to explain the success of sparse filtering on real-world problems. Our work provides a strong theoretical basis for understanding sparse filtering: it highlights assumptions and conditions for success behind this feature distribution learning algorithm, and provides insights for developing new feature distribution learning algorithms.
Penetration testing is a security exercise aimed at assessing the security of a system by simulating attacks against it. So far, penetration testing has been carried out mainly by trained human attackers and its success critically depended on the available expertise. Automating this practice constitutes a non-trivial problem, as the range of actions that a human expert may attempts against a system and the range of knowledge she relies on to take her decisions are hard to capture. In this paper, we focus our attention on simplified penetration testing problems expressed in the form of capture the flag hacking challenges, and we apply reinforcement learning algorithms to try to solve them. In modeling these capture the flag competitions as reinforcement learning problems we highlight the specific challenges that characterize penetration testing. We observe these challenges experimentally across a set of varied simulations, and we study how different reinforcement learning techniques may help us addressing these challenges. In this way we show the feasibility of tackling penetration testing using reinforcement learning, and we highlight the challenges that must be taken into consideration, and possible directions to solve them.
Penetration testing is a security exercise aimed at assessing the security of a system by simulating attacks against it. So far, penetration testing has been carried out mainly by trained human attackers and its success critically depended on the available expertise. Automating this practice constitutes a non-trivial problem because of the range and complexity of actions that a human expert may attempt. The authors focus their attention on simplified penetration testing problems expressed in the form of capture the flag hacking challenges, and analyse how model-free reinforcement learning algorithms may help solving them. In modelling these capture the flag competitions as reinforcement learning problems the authors highlight the specific challenges that characterize penetration testing. The authors show how this challenge may be eased by relying on different forms of prior knowledge that may be provided to the agent. Since complexity scales exponentially as soon as the set of states and actions for the reinforcement learning agent is extended, the need to restrict the exploration space by using techniques to inject a priori knowledge is highlighted, thus making it possible to achieve solutions more efficiently. K E Y W O R D Scapture the flag, imitation learning, penetration testing, Q-learning, reinforcement learningThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Website hacking is a frequent attack type used by malicious actors to obtain confidential information, modify the integrity of web pages or make websites unavailable. The tools used by attackers are becoming more and more automated and sophisticated, and malicious machine learning agents seem to be the next development in this line. In order to provide ethical hackers with similar tools, and to understand the impact and the limitations of artificial agents, we present in this paper a model that formalizes web hacking tasks for reinforcement learning agents. Our model, named Agent Web Model, considers web hacking as a capture-the-flag style challenge, and it defines reinforcement learning problems at seven different levels of abstraction. We discuss the complexity of these problems in terms of actions and states an agent has to deal with, and we show that such a model allows to represent most of the relevant web vulnerabilities. Aware that the driver of advances in reinforcement learning is the availability of standardized challenges, we provide an implementation for the first three abstraction layers, in the hope that the community would consider these challenges in order to develop intelligent web hacking agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.