A Hamiltonian model living in a bounded phase space and with long-range interactions is studied. It is shown, by analytical computations, that there exists an energy interval in which the microcanonical entropy is a decreasing convex function of the total energy, meaning that ensemble equivalence is violated in a negative-temperature regime. The equilibrium properties of the model are then investigated by molecular dynamics simulations: first, the caloric curve is reconstructed for the microcanonical ensemble and compared to the analytical prediction, and a generalized Maxwell-Boltzmann distribution for the momenta is observed; then, the nonequivalence between the microcanonical and canonical descriptions is explicitly shown. Moreover, the validity of Fluctuation-Dissipation Theorem is verified through a numerical study, also at negative temperature and in the region where the two ensembles are nonequivalent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.