Epidemic Clostridium difficile (027/BI/NAP1) rapidly emerged in the past decade as the leading cause of antibiotic-associated diarrhea worldwide. However, the key moments in the evolutionary history leading to its emergence and subsequent patterns of global spread remain unknown. Here we define the global population structure of C. difficile 027/BI/NAP1 based on whole-genome sequencing and phylogenetic analysis. We demonstrate that two distinct epidemic lineages, FQR1 and FQR2, not one as previously thought, emerged in North America within a relatively short period after acquiring the same fluoroquinolone resistance mutation and a highly-related conjugative transposon. The two epidemic lineages displayed distinct patterns of global spread, and the FQR2 lineage spread more widely leading to healthcare outbreaks in the UK, continental Europe and Australia. Our analysis identifies key genetic changes linked to the rapid trans-continental dissemination of epidemic C. difficile 027/BI/NAP1 and highlights the routes by which it spreads through the global healthcare system.
A functional brain-derived neurotrophic factor (BDNF) gene polymorphism (Val66Met) that alters activitydependent secretion has previously been reported to influence cognitive functioning. A large proportion of these reports suggest that the Met allele, which results in reduced secretion of BDNF, impairs long-term memory as a direct consequence of its influence on hippocampal function but has little influence on working memory. In contrast, other studies have found that the Met allele can also play a protective role in certain neurological conditions and is associated with improved non-verbal reasoning skills in the elderly suggesting effects that appear disease, domain and age specific. We have investigated six haplotype-tagging single nucleotide polymorphisms (SNPs) using a cohort of 722 elderly individuals who have completed cognitive tests that measured the domains of fluid intelligence, processing speed and memory. We found that the presence of the Met allele reduced cognitive performance on all cognitive tests. This reached nominal significance for tests of processing speed (P 5 0.001), delayed recall (P 5 0.037) and general intelligence (g) (P 5 0.008). No association was observed between cognitive tests and any other SNPs once the Val66Met was adjusted for. Our results support initial findings that the Met allele is associated with reduced cognitive functioning. We found no evidence that the Met allele plays a protective role in older non-demented individuals. Magnetic resonance imaging data collected from a subgroup of 61 volunteers showed that the left and right hippocampus were 5.0% and 3.9% smaller, respectively, in those possessing the Met allele, although only a non-significant trend was observed.
The emergence of Clostridium difficile as a significant human diarrheal pathogen is associated with the production of highly transmissible spores and the acquisition of antimicrobial resistance genes (ARGs) and virulence factors. Unlike the hospital-associated C. difficile RT027 lineage, the community-associated C. difficile RT078 lineage is isolated from both humans and farm animals; however, the geographical population structure and transmission networks remain unknown. Here, we applied whole-genome phylogenetic analysis of 248 C. difficile RT078 strains from 22 countries. Our results demonstrate limited geographical clustering for C. difficile RT078 and extensive coclustering of human and animal strains, thereby revealing a highly linked intercontinental transmission network between humans and animals. Comparative whole-genome analysis reveals indistinguishable accessory genomes between human and animal strains and a variety of antimicrobial resistance genes in the pangenome of C. difficile RT078. Thus, bidirectional spread of C. difficile RT078 between farm animals and humans may represent an unappreciated route disseminating antimicrobial resistance genes between humans and animals. These results highlight the importance of the “One Health” concept to monitor infectious disease emergence and the dissemination of antimicrobial resistance genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.