Complex multi-trophic interactions in vectorborne diseases limit our understanding and ability to predict outbreaks. Arthropod-vectored pathogens are especially problematic, with the potential for novel interspecific interactions during invasions. Variations and novelties in plant–arthropod–pathogen triumvirates present significant threats to global food security. We examined aspects of a phytoplasma pathogen of citrus across two continents. ‘Candidatus Phytoplasma aurantifolia’ causes Witches' Broom Disease of Lime (WBDL) and has devastated citrus production in the Middle East. A variant of this phytoplasma currently displays asymptomatic or ‘silent’ infections in Brazil. We first studied vector capacity and fitness impacts of the pathogen on its vectors. The potential for co-occurring weed species to act as pathogen reservoirs was analysed and key transmission periods in the year were also studied. We demonstrate that two invasive hemipteran insects—Diaphorina citri and Hishimonus phycitis—can vector the phytoplasma. Feeding on phytoplasma-infected hosts greatly increased reproduction of its invasive vector D. citri both in Oman and Brazil; suggesting that increased fitness of invasive insect vectors thereby further increases the pathogen's capacity to spread. Based on our findings, this is a robust system for studying the effects of invasions on vectorborne diseases and highlights concerns about its spread to warmer, drier regions of Brazil.
Background The necessity of a competent vector for transmission is a primary ecological factor driving the host range expansion of plant arthropod-borne viruses, with vectors playing an essential role in disease emergence. Cassava begomoviruses severely constrain cassava production in Africa. Curiously, begomoviruses have never been reported in cassava in South America, the center of origin for this crop. It has been hypothesized that the absence of a competent vector in cassava is the reason why begomoviruses have not emerged in South America. Methods We performed a country-wide whitefly diversity study in cassava in Brazil. Adults and/or nymphs of whiteflies were collected from sixty-six cassava fields in the main agroecological zones of the country. A total of 1,385 individuals were genotyped based on mitochondrial cytochrome oxidase I sequences. Results A high species richness was observed, with five previously described species and two putative new ones. The prevalent species were Tetraleurodes acaciae and Bemisia tuberculata, representing over 75% of the analyzed individuals. Although we detected, for the first time, the presence of Bemisia tabaci Middle East-Asia Minor 1 (BtMEAM1) colonizing cassava in Brazil, it was not prevalent. The species composition varied across regions, with fields in the Northeast region showing a higher diversity. These results expand our knowledge of whitefly diversity in cassava and support the hypothesis that begomovirus epidemics have not occurred in cassava in Brazil due to the absence of competent vector populations. However, they indicate an ongoing adaptation process of BtMEAM1 to cassava, increasing the likelihood of begomovirus emergence in this crop.
The history of the barley yellow dwarf virus (BYDV) in Brazil began to be officially reported in 1968 when symptoms of yellowing in wheat were atributed to this ecological agent. The exact date of introductio of the virus in Brazil is unknown, but plants with symptoms similar to those caused by the virus and the aphid vectors had already been reported decades before the official diagnosis. After the identification of BYDV in Rio Grande do Sul, the virus was also found in other wheat regions in Santa Catarina, Paraná, São Paulo, Mato Grosso do Sul, Distrito Federal and Minas Gerais. This history will be explored from two points of view. First, considering the description of the variability of the viral population according to the detection and diagnosis methods and technologies available at each at me, and second, analyzing the impacts of changes in the Brazilian agricultural landscape and management practices on viral epidemiology
Prohexadione-calcium (ProCa) is a gibberellin biosynthesis inhibitor and the objective of this study was to evaluate the effect of ProCa on the downy mildew (DM) and Botrytis bunch rot (BBR) epidemiology, and the yield and technological and phenolic parameters of grape Merlot cultivar. Experiments were carried out in a commercial vineyard in São Joaquim Municipality/SC, Southern Brazil, during the 2017-2018 and 2018-2019 growing seasons. ProCa was applied at four doses and three phenological stages: A) 0 g ha−1 (control); B) 1000 g ha−1 (inflorescence fully developed); C) 500 + 500 g ha−1 (inflorescence fully developeted and full flowering); D) 500 + 500 + 500 g ha−1 (inflorescence fully developed, full flowering, and berries pea-sized). DM and BBR incidence and severity were quantified weekly from the first symptom appearance until harvest, and their epidemiology was compared according to: a) the beginning of symptom appearance; b) the time to reach the maximum disease incidence and severity; c) the maximum value of disease incidence and severity; d) the area under the disease progress curve. In general, there were significant differences in the ProCa doses for all epidemiologic parameters of DM and BBR compared with the control plot; however, there was no significant difference among the ProCa doses. The principal epidemiological variables that differentiated the effect of ProCa on the DM and BBR control were the Smax and AUSDPC. Some yield and technological and phenolic parameters were negatively affected by different doses of ProCa, but it was still a good option for DM and BBR control in highland region of southern Brazil during the 2017-2018 and 2018-2019 growing seasons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.