The triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial innate immune receptor associated with a lethal form of early, progressive dementia, Nasu-Hakola disease, and with an increased risk of Alzheimer's disease. Microglial defects in phagocytosis of toxic aggregates or apoptotic membranes were proposed to be at the origin of the pathological processes in the presence of Trem2 inactivating mutations. Here, we show that TREM2 is essential for microglia-mediated synaptic refinement during the early stages of brain development. The absence of Trem2 resulted in impaired synapse elimination, accompanied by enhanced excitatory neurotransmission and reduced long-range functional connectivity. Trem2 mice displayed repetitive behavior and altered sociability. TREM2 protein levels were also negatively correlated with the severity of symptoms in humans affected by autism. These data unveil the role of TREM2 in neuronal circuit sculpting and provide the evidence for the receptor's involvement in neurodevelopmental diseases.
Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM 2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine ( PS ) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM 2. In vivo , PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS ‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures.
Neuronal circuits assembly requires the fine equilibrium between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized key players in this process, the neuronal molecular components that tag synapses to be eliminated are still undefined. Here we show that exposed phosphatidylserine (PS) represents a neuronal 'eat-me' signal enabling microglial-mediated synapse pruning. In hippocampal neuron and microglia co-cultures, synapse elimination can be prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo, exposed PS is detectable at both hippocampal and retinogeniculate synapses, where exposure coincides with the onset of synapse elimination and increased PS engulfment by microglia. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, display elevated exposed PS and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial-mediated synapse pruning and identify a novel role of developmentally regulated PS exposure that is common among developing brain structures.
Hericium erinaceus is an edible and medicinal mushroom with potential neuroprotective effects. The study of H. erinaceus has attracted considerable attention during the past 10 years, particularly with regard to its potential utility in the treatment of motor dysfunction, Alzheimer disease, and other forms of dementia. We previously determined that oral supplementation with H. erinaceus results in significant improvements in novelty-seeking behavior and novel object recognition in mice. In this study, H. erinaceus was added to the diets of wild-type mice for 2 months, and effects on spatial memory were evaluated by means of a Y maze and an object location task. We found that H. erinaceus increased general locomotor activity but had no effect on spatial memory. Thus, oral supplementation with H. erinaceus yields specific and selective improvements in recognition memory without altering spatial working memory, which supports the hypothesis that recognition memory can be modeled as a dual process. In this model, the perirhinal cortex supports the recognition of individual items as part of a circuit involved in familiarity with an encountered stimulus, whereas the hippocampus supports recollected associations and relationships between stimuli.
Actin-based remodeling underlines spine morphogenesis and plasticity and is crucially involved in the processes that constantly reshape the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation and supporting cognitive functions. Hence spine morphology and synaptic strength are tightly linked and indeed abnormalities in spine number and morphology have been described in a number of neurological disorders such as autism spectrum disorders (ASDs), schizophrenia and intellectual disabilities. We have recently demonstrated that the actin regulating protein, Epidermal growth factor receptor pathway substrate 8 (Eps8), is essential for spine growth and long term potentiation. Indeed, mice lacking Eps8 display immature filopodia-like spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Furthermore, reduced levels of Eps8 have been found in the brain of a cohort of patients affected by ASD compared to controls. Here we investigated whether the lack of Eps8, which is also part of the N-methyl-d-aspartate (NMDA) receptor complex, affects the functional maturation of the postsynaptic compartment. Our results demonstrate that Eps8 knock out mice (Eps8 KO) neurons display altered synaptic expression and subunit composition of NMDA receptors (i.e., increased GluN2B-, decreased GluN2A-containing receptors) and impaired GluN2B to GluN2A subunit shift. Indeed Eps8 KO neurons display increased content of GluN2B containing NMDA receptors both at the synaptic and extrasynaptic level. Furthermore, Eps8 KO neurons display an increased content of extra-synaptic GluN2B-containing receptors, suggesting that also the synaptic targeting of NMDA receptors is affected by the lack of Eps8. These data demonstrate that, besides regulation of spine morphogenesis, Eps8 also regulates the synaptic balance of NMDA receptors subunits GluN2A and GluN2B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.