Image-to-image translation architectures may have limited effectiveness in some circumstances. For example, while generating rainy scenarios, they may fail to model typical traits of rain as water drops, and this ultimately impacts the synthetic images realism. With our method, called domain bridge, web-crawled data are exploited to reduce the domain gap, leading to the inclusion of previously ignored elements in the generated images. We make use of a network for clear to rain translation trained with the domain bridge to extend our work to Unsupervised Domain Adaptation (UDA). In that context, we introduce an online multimodal style-sampling strategy, where image translation multimodality is exploited at training time to improve performances. Finally, a novel approach for self-supervised learning is presented, and used to further align the domains. With our contributions, we simultaneously increase the realism of the generated images, while reaching on par performances w.r.t. the UDA state-of-the-art, with a simpler approach.
Lane detection is extremely important for autonomous vehicles. For this reason, many approaches use lane boundary information to locate the vehicle inside the street, or to integrate GPS-based localization. As many other computer vision based tasks, convolutional neural networks (CNNs) represent the state-of-the-art technology to indentify lane boundaries. However, the position of the lane boundaries w.r.t. the vehicle may not suffice for a reliable positioning, as for path planning or localization information regarding lane types may also be needed. In this work, we present an end-to-end system for lane boundary identification, clustering and classification, based on two cascaded neural networks, that runs in real-time. To build the system, 14336 lane boundaries instances of the TuSimple dataset for lane detection have been labelled using 8 different classes. Our dataset and the code for inference are available online.
Many systems for autonomous vehicles' navigation rely on lane detection. Traditional algorithms usually estimate only the position of the lanes on the road, but an autonomous control system may also need to know if a lane marking can be crossed or not, and what portion of space inside the lane is free from obstacles, to make safer control decisions. On the other hand, free space detection algorithms only detect navigable areas, without information about lanes. State-ofthe-art algorithms use CNNs for both tasks, with significant consumption of computing resources. We propose a novel approach that estimates the free space inside each lane, with a single CNN. Additionally, adding only a small requirement concerning GPU RAM, we infer the road type, that will be useful for path planning. To achieve this result, we train a multi-task CNN. Then, we further elaborate the output of the network, to extract polygons that can be effectively used in navigation control. Finally, we provide a computationally efficient implementation, based on ROS, that can be executed in real time. Our code and trained models are available online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.