We attempted to identify the specific structural features in sulfated galactans and sulfated fucans that confer anticoagulant activity. For this study we employed a variety of invertebrate polysaccharides with simple structures composed of well-defined units of oligosaccharides. Our results indicate that a 2-O-sulfated, 3-linked alpha-L-galactan, but not a alpha-L-fucan with a similar molecular size, is a potent thrombin inhibitor mediated by antithrombin or heparin cofactor II. The difference between the activities of these two polysaccharides is not very pronounced when factor Xa replaced thrombin. The occurrence of 2,4-di-O-sulfated units is an amplifying motif for 3-linked alpha-fucan-enhanced thrombin inhibition by antithrombin. If we replace antithrombin by heparin cofactor II, then the major structural requirement for the activity becomes single 4-O-sulfated fucose units. The presence of 2-O-sulfated fucose residues always had a deleterious effect on anticoagulant activity. Overall, our results indicate that the structural requirements for interaction of sulfated galactans and sulfated fucans with coagulation cofactors and their target proteases are stereospecific and not merely a consequence of their charge density and sulfate content.
We investigated the mechanisms of anticoagulant activity mediated by sulfated galactans. The anticoagulant activity of sulfated polysaccharides is achieved mainly through potentiation of plasma cofactors, which are the natural inhibitors of coagulation proteases. Our results indicated the following. 1) Structural requirements for the interaction of sulfated galactans with coagulation inhibitors and their target proteases are not merely a consequence of their charge density. 2) The structural basis of this interaction is complex because it involves naturally heterogeneous polysaccharides but depends on the distribution of sulfate groups and on monosaccharide composition. 3) Sulfated galactans require significantly longer chains than heparin to achieve anticoagulant activity. 4) Possibly, it is the bulk structure of the sulfated galactan, and not a specific minor component as in heparin, that determines its interaction with antithrombin. 5) Sulfated galactans of ϳ15 to ϳ45 kDa bind to antithrombin but are unable to link the plasma inhibitor and thrombin. This last effect requires a molecular size above 45 kDa. 6) Sulfated galactan and heparin bind to different sites on antithrombin. 7) Sulfated galactans are less effective than heparin at promoting antithrombin conformational activation. Overall, these observations indicate that a different mechanism predominates over the conformational activation of antithrombin in ensuring the antithrombin-mediated anticoagulant activity of the sulfated galactans. Possibly, sulfated galactan connects antithrombin and thrombin, holding the protease in an inactive form. The conformational activation of antithrombin and the consequent formation of a covalent complex with thrombin appear to be less important for the anticoagulant activity of sulfated galactan than for heparin. Our results demonstrate that the paradigm of heparin-antithrombin interaction cannot be extended to other sulfated polysaccharides. Each type of polysaccharide may form a particular complex with the plasma inhibitor and the target protease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.