Aerial manipulation aims at combining the versatility and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well.
An estimator of external generalized forces (force plus moments) acting on aerial platforms, and based on the momentum of the mechanical system, is proposed for the control of VToL UAVs together with a hierarchical architecture separating the translational and rotational dynamics of the vehicle. The closed-loop system equations are shaped as mechanical impedances, programmable through the controller gains, and forced by the residuals given by the estimation error. This arrangement allows the VToL UAVs to perform hovering and tracking tasks without a precise knowledge of the vehicle dynamics and in presence of external disturbances and unmodeled aerodynamic effects. Experiments are presented to evaluate the performance of the proposed control design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.