Wilms' tumors (WTs) originate from metanephric blastema cells that are unable to complete differentiation, resulting in triphasic tumors composed of epithelial, stromal and blastemal cells, with the latter harboring molecular characteristics similar to those of the earliest kidney development stages. Precise regulation of Wnt and related signaling pathways has been shown to be crucial for correct kidney differentiation. In this study, the gene expression profile of Wnt and related pathways was assessed in laser-microdissected blastemal cells in WTs and differentiated kidneys, in human and in four temporal kidney differentiation stages (i.e. E15.5, E17.5, P1.5 and P7.5) in mice, using an orthologous cDNA microarray platform. A signaling pathway-based gene signature was shared between cells of WT and of earliest kidney differentiation stages, revealing genes involved in the interruption of blastemal cell differentiation in WT. Reverse transcription-quantitative PCR showed high robustness of the microarray data demonstrating 75 and 56% agreement in the initial and independent sample sets, respectively. The protein expression of CRABP2, IGF2, GRK7, TESK1, HDGF, WNT5B, FZD2 and TIMP3 was characterized in WTs and in a panel of human fetal kidneys displaying remarkable aspects of differentiation, which was recapitulated in the tumor. Taken together, this study reveals new genes candidate for triggering WT onset and for therapeutic treatment targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.