The traditional use of essential oils in aromatherapy has offered numerous health benefits. However, few scientific studies have been conducted with these oils to confirm their therapeutic efficacy. (+)-Limonene is a chemical constituent of various bioactive essential oils. The present study reports on the anxiolytic-like effects of (+)-limonene in an elevated maze model of anxiety in mice. At concentrations of 0.5% and 1.0%, (+)-limonene, administered to mice by inhalation, significantly modified all the parameters evaluated in the elevated plus maze test. The pharmacological effect of inhaled (+)-limonene (1%) was not blocked by flumazenil. Analysis of (+)-limonene using gas chromatography-mass spectrometry (GC-MS) showed its volatility to be high. These data suggest possible connections between the volatility of (+)-limonene and its anxiolytic-like effect on the parameters evaluated in the elevated plus maze test. The data indicate that (+)-limonene could be used in aromatherapy as an antianxiety agent.
This work aimed the studies of physicochemical characterization, thermal stability, and compatibility of benznidazole (BNZ) drug by spectroscopy (NMR, IR), thermoanalytical (differential thermal analysis, differential scanning calorimetry, and thermogravimetry), and chromatographic (HPLC) techniques, beyond the analytical tools of Van't Hoff equation and Ozawa model. The compatibility study was conducted by binary mixtures (1:1, w/w) of the drug with microcrystalline cellulose 102 and 250, anhydrous lactose, and sodium starch glycolate. The physicochemical characterization confirmed data reported in scientific literature, guaranteeing authenticity of the analyzed raw material. The drug melts at 191.68°C (∆H, 119.71 J g(-1)), characteristic of a non-polymorphic raw material, and a main stage decomposition at 233.76-319.35°C (∆m, 43.32%) occurred, ending the study with almost all mass volatilized. The quantification of drug purity demonstrated a correlation of 99.63% between the data obtained by chromatographic (99.20%) and thermoanalytical technique (99.56%). The Arrhenius equation and Ozawa model showed a zero-order kinetic behavior for the drug decomposition, and a calculated provisional validity time was 2.37 years at 25°C. The compatibility study evidenced two possible chemical incompatibilities between BNZ and the tested excipients, both associated by the authors to the reaction of the BNZ's amine and a polymer carbohydrate's carbonile, being maillard reactions. The BNZ reaction with anhydrous lactose is more pronounced than with the sodium starch glycolate because the lactose has more free hydroxyl groups to undergo reduction by the drug. In this sense, this work guides the development of a new solid pharmaceutical product for Chagas disease treatment, with defined quality control parameters and physicochemical stability.
Momordica charantia is a species cultivated throughout the world and widely used in folk medicine, and its medicinal benefits are well documented, especially its pharmacological properties, including antimicrobial activities. Analytical methods have been used to aid in the characterization of compounds derived from plant drug extracts and their products. This paper developed a methodological model to evaluate the integrity of the vegetable drug M. charantia in different particle sizes, using different analytical methods. M. charantia was collected in the semiarid region of Paraíba, Brazil. The herbal medicine raw material derived from the leaves and fruits in different particle sizes was analyzed using thermoanalytical techniques as thermogravimetry (TG) and differential thermal analysis (DTA), pyrolysis coupled to gas chromatography/mass spectrometry (PYR-GC/MS), and nuclear magnetic resonance (1H NMR), in addition to the determination of antimicrobial activity. The different particle surface area among the samples was differentiated by the techniques. DTA and TG were used for assessing thermal and kinetic parameters and PYR-GC/MS was used for degradation products chromatographic identification through the pyrograms. The infusions obtained from the fruit and leaves of Momordica charantia presented antimicrobial activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.