Pinna nobilis is the largest endemic Mediterranean marine bivalve. During past centuries, various human activities have promoted the regression of its populations. As a consequence of stringent standards of protection, demographic expansions are currently reported in many sites. The aim of this study was to provide the first large broad-scale insight into the genetic variability of P. nobilis in the area that encompasses the western Mediterranean, Ionian Sea, and Adriatic Sea marine ecoregions. To accomplish this objective twenty-five populations from this area were surveyed using two mitochondrial DNA markers (COI and 16S). Our dataset was then merged with those obtained in other studies for the Aegean and Tunisian populations (eastern Mediterranean), and statistical analyses (Bayesian model-based clustering, median-joining network, AMOVA, mismatch distribution, Tajima’s and Fu’s neutrality tests and Bayesian skyline plots) were performed. The results revealed genetic divergence among three distinguishable areas: (1) western Mediterranean and Ionian Sea; (2) Adriatic Sea; and (3) Aegean Sea and Tunisian coastal areas. From a conservational point of view, populations from the three genetically divergent groups found may be considered as different management units.
The fan mussel, Pinna nobilis, represents the largest bivalve endemic to the Mediterranean Sea. Since 2016, dramatic mass mortality of this species has been observed in several areas. The first surveys suggested that Haplosporidium pinnae (currently considered species-specific) was the main etiological agent, but recent studies have indicated that a multifactorial disease may be responsible for this phenomenon. In this study, we performed molecular diagnostic analyses on P. nobilis, P. rudis, and bivalve heterologous host species from the island of Sardinia to shed further light on the pathogens involved in the mass mortality. The results support the occurrence of a multifactorial disease and that Mycobacterium spp. and H. pinnae are not necessarily associated with the illness. Indeed, our analyses revealed that H. pinnae is not species-specific for P. nobilis, as it was present in other bivalves at least three years before the mass mortality began, and species of Mycobacterium were also found in healthy individuals of P. nobilis and P. rudis. We also detected the species Rhodococcus erythropolis, representing the first report in fan mussels of a bacterium other than Mycobacterium spp. and Vibrio spp. These results depict a complicated scenario, further demonstrating how the P. nobilis mass mortality event is far from being fully understood.
African swine fever virus (ASFV), the cause of a devastating disease affecting domestic and wild pigs, has been present in Sardinia since 1978. In the framework of the regional ASF eradication plan, 4484 illegal pigs were culled between December 2017 and February 2020. The highest disease prevalence was observed in the municipality with the highest free-ranging pig density, and culling actions drastically reduced ASFV circulation among these animals. ASFV-antibody were detected in 36.7% of tested animals, which were apparently healthy, thus, the circulation of low-virulence ASFV isolates was hypothesized. ASFV genome was detected in 53 out of 2726 tested animals, and virus isolation was achieved in two distinct culling actions. Two ASFV haemadsorbing strains were isolated from antibody-positive apparently healthy pigs: 55234/18 and 103917/18. Typing analysis revealed that both isolates belong to p72 genotype I, B602L subgroup X; phylogenetic analysis based on whole genome sequencing data showed that they were closely related to Sardinian ASFV strains collected since 2010, especially 22653/Ca/2014. Our data suggested the absence of immune-escaped ASFV variants circulating among free-ranging pigs, indicating that other elements contributed to virus circulation among these animals. Understanding factors behind disease persistence in endemic settings might contribute to developing effective countermeasures against this disease.
Comparison of the electrostatic potential surface of the Centaurus and BA.2 Spike receptor binding domains (RBDs). Red and blue colors indicate negative and positive potential, respectively. The color scale ranges from −5.0 to +5.0 kT/e. The RBD is oriented with the ACE2 interface in the front. Position of the R493 in BA.2 is marked by the white arrow. Calculations have been carried out with the software PROPKA3 12 while in-silico mutagenesis by means of PyMOL Molecular Graphics System v.2 (available at https://pymol.org/2/). The conformation of the side chains of the mutagenized structures was optimized by the application of the software FoldX 5.0. 13
The BQ.1 SARS-CoV-2 variant, also known as Cerberus, is one of the most recent Omicron descendant lineages. Compared to its direct progenitor BA.5, BQ.1 has some additional spike mutations in some key antigenic sites, which confer further immune escape ability over other circulating lineages. In such a context, here, we perform a genome-based survey aimed at obtaining a complete-as-possible nuance of this rapidly evolving Omicron subvariant. Genetic data suggest that BQ.1 represents an evolutionary blind background, lacking the rapid diversification that is typical of a dangerous lineage. Indeed, the evolutionary rate of BQ.1 is very similar to that of BA.5 (7.6 × 10−4 and 7 × 10−4 subs/site/year, respectively), which has been circulating for several months. The Bayesian Skyline Plot reconstruction indicates a low level of genetic variability, suggesting that the peak was reached around 3 September 2022. Concerning the affinity for ACE2, structure analyses (also performed by comparing the properties of BQ.1 and BA.5 RBD) indicate that the impact of the BQ.1 mutations may be modest. Likewise, immunoinformatic analyses showed moderate differences between the BQ.1 and BA5 potential B-cell epitopes. In conclusion, genetic and structural analyses on SARS-CoV-2 BQ.1 suggest no evidence of a particularly dangerous or high expansion capability. Genome-based monitoring must continue uninterrupted for a better understanding of its descendants and all other lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.