We aimed to isolate biosurfactant-producing bacteria in high salt conditions from uncontaminated soils on the Brazilian oceanic island, Trindade. Blood agar medium was used for the isolation of presumptive biosurfactant-producing bacteria. Confirmation and measurements of biosurfactant production were made using an oil-spreading method. The isolates were identified by fatty acid profiles and partial 16S rRNA gene sequence analysis. A total of 14 isolates obtained from the 12 soil samples were found to produce biosurfactants. Among them, two isolates stood out as being able to produce biosurfactant that is increasingly active in solutions containing up to 175 g L(-1) NaCl. These high salt tolerant biosurfactant producers are affiliated to different species of the genus Bacillus. Soil organic matter showed positive correlation with the number of biosurfactant-producing bacteria isolated from our different sampling sites. The applied approach successfully recovered and identified biosurfactant-producing bacteria from non-contaminated soils. Due to the elevated salt tolerance, as well as their capacity to produce biosurfactants, these isolates are promising for environmental biotechnological applications, especially in the oil production chain.
A novel marine actinomycete, designated strain CMAA 1452T, was isolated from the sponge Scopalina ruetzleri collected from Saint Peter and Saint Paul Archipelago, in Brazil, and subjected to a polyphasic taxonomic investigation. The organism formed a distinct phyletic line in the Saccharopolyspora 16S rRNA gene tree and had chemotaxonomic and morphological properties consistent with its classification in this genus. It was found to be closely related to Saccharopolyspora dendranthemae KLBMP 1305T (99.5% 16S rRNA gene sequence similarity) and shared similarities of 99.3, 99.2 and 99.0 % with 'Saccharopolyspora endophytica' YIM 61095, Saccharopolyspora tripterygii YIM 65359T and 'Saccharopolyspora pathumthaniensis' S582, respectively. DNA-DNA relatedness values between the isolate and its closest phylogenetic neighbours, namely S. dendranthemae KLBMP 1305T, 'S. endophytica' YIM 61095 and S. tripterygii YIM 65359T, were 53.5, 25.8 and 53.2 %, respectively. Strain CMAA 1452T was also distinguished from the type strains of these species using a range of phenotypic features. On the basis of these results, it is proposed that strain CMAA 1452T (=DSM 103218T=NRRL B-65384T) merits recognition as the type strain of a novel Saccharopolyspora species, Saccharopolyspora spongiae sp. nov.
Bioprospecting of actinobacteria associated with marine sponge Aplysina fulva: isolation, characterization and production of bioactive compoundsActinobacteria are producers of important pharmacological compounds. About 70% of natural antibiotics are derived from these microorganisms. However, the use of natural compounds are still limited in the agricultural industry, even considering that synthetic pesticides are less effective against pathogens and weed plants. This study describes the diversity of actinobacteria associated with the marine sponge Aplysina fulva and their potential as producers of bioactive compounds with fungicidal and herbicidal properties. In this study, a total of 21 actinomycetes were isolated with the use of selective media. Phylogenetic analyzes based on partial sequencing of the gene encoding for 16S rRNA showed that these microorganisms belong to eight Actinobacteria genera, including Kocuria, Citricoccus, Terrabacter, Gordonia, Agrococcus, Tsukamurella, Brevibacterium and Streptomyces. The extracts of all isolates were tested for the production of secondary metabolites with fungicidal properties against the following phytopathogenic fungi: of Pythium aphanidermatum, Phytophthora capsici and Magnaporthe grisea. The crude extract of 43% of the isolates showed fungicidal activity for at least one of the pathogens. The chemical profiles of the actinobacteria extracts with positive bioactivity were similar even among different genus. The metabolites of Streptomyces ASPSP 103 were more efficient because of the strong inhibition against all tested pathogens. So, the isolate ASPSP 103 was selected and tested for herbicide activity through screening for algaecide activity towards microalgae Selenastrum capricornutum. We believe that actinobacteria associated with marine sponges play a role in chemical defense against algae that can obstruct the pores, choking the animal. These algaecides compounds possibly have herbicide action. Activity of the Streptomyces ASPSP 103 crude extract against S. capricornutum was observed. In addition, it was observed a weak pre-emergence herbicide activity on Lactuca sativa (dicot) and a strong inhibition in Agrostis stolonifera (monocot). The purification of the crude extract to isolate the bioactive compound was guided by bioassay against Pythium aphanidermatum, a fast growing oomycete and sensitive to metabolites from ASPSP 103 previously tested. The butenolide compound was identified with pre-emergence herbicidal activity against Agrostis stolonifera (IC 50 33.43 µg/mL). This is the first report of butenolide activity with herbicide activity. Taxonomy studies showed that the phylogenetic, morphological and chemical characteristics of the isolated ASPSP 103 are consistent with the Streptomyces genus. Then, considering some differences in taxonomic parameters, ASPSP 103 T was proposed as line type for a new species of Streptomyces, for which the name Streptomyces atlanticus sp. nov. was suggested. These results emphasize the potential of marine Streptomyces to p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.