We report the fabrication of organic bulk-heterojunction solar cells based, for the first time, on squaraine/PCBM blends. The most efficient device, solution-processed in air, exhibits J(sc) = 5.70 mA/cm(2), V(oc) = 0.62 V, fill-factor = 0.35, and power conversion efficiency = 1.24%, one of the highest to date for a small molecule solution-processed bulk-heterojunction cell.
Singlet oxygen sensitization by organic molecules is a topic of major interest in the development of both efficient photodynamic therapy (PDT) and aerobic oxidations under complete green chemistry conditions. We report on the design, synthesis, biology, and complete spectroscopic characterization (vis-NIR linear and two-photon absorption spectroscopy, singlet oxygen generation efficiencies for both one- and two-photon excitation, electrochemistry, intrinsic dark toxicity, cellular uptake, and subcellular localization) of three classes of innovative singlet oxygen sensitizers pertaining to the family of symmetric squaraine derivatives originating from pi-excessive heterocycles. The main advantage of pi-extended squaraine photosensitizers over the large number of other known photosensitizers is their exceedingly strong two-photon absorption enabling, together with sizable singlet oxygen sensitization capabilities, for their use at the clinical application relevant wavelength of 806 nm. We finally show encouraging results about the dark toxicity and cellular uptake capabilities of water-soluble squaraine photosensitizers, opening the way for clinical small animal PDT trials.
We report two new squaraine dyes substituted at the pyrrolic rings with n-hexyl (squaraine 1) or n-hexenyl (squaraine 2) chains. Although internal molecular structure variations are minimal, the presence of the terminal double bond results in a much more compact solid-state structure, dramatically affecting charge transport in the thin films; the hole mobility of 2 is approximately 5x that of 1, and the BHJ OPV power conversion efficiency (PCE) of 2 is approximately 2x that of 1. PCEs surpassing 2% for ambient solution-processed devices are demonstrated, the largest so far achieved for squaraine-based organic solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.