SUMMARYCurrent computational systems are heterogeneous by nature, featuring a combination of CPUs and graphics processing units (GPUs). As the latter are becoming an established platform for high-performance computing, the focus is shifting towards the seamless programming of these hybrid systems as a whole. The distinct nature of the architectural and execution models in place raises several challenges, as the best hardware configuration is behavior and workload dependent. In this paper, we address the execution of compound, multi-kernel, open computing language computations in multi-CPU/multi-GPU environments. We address how these computations may be efficiently scheduled onto the target hardware, and how the system may adapt itself to changes in the workload to process and to fluctuations in the CPU's load. An experimental evaluation attests the performance gains obtained by the conjoined use of the CPU and GPU devices, when compared with GPU-only executions, and also by the use of data-locality optimizations in CPU environments.
Current computational systems are heterogeneous by nature, featuring a combination of CPUs and GPUs. As the latter are becoming an established platform for high-performance computing, the focus is shifting towards the seamless programming of the heterogeneous systems as a whole. The distinct nature of the architectural and execution models in place raise several challenges, as the best hardware configuration is behavior and data-set dependent. In this paper, we focus the execution of compound computations in multi-CPU/multi-GPU environments, in the scope of Marrow algorithmic skeleton framework, the only, to the best of our knowledge, to support skeleton nesting in GPU computing. We address how these computations may be efficiently scheduled onto the target hardware, and how the system may adapt itself to changes in the CPU's load and in the input data-set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.