Ni nanoparticles embedded in CeO2 (Ni@CeO2) and CeZrO2 (Ni@CeZrO2) were synthesized by sol-gel method and compared with a Ni/CeO2 prepared by support impregnation. The performance of the catalysts was investigated for dry reforming of methane reaction. In situ XRD, XANES and TEM showed that Ni embedded in CeO2 improved the resistance to sintering along the reduction at 800 o C. Doping ceria with zirconia inhibited the growth of Ni particles and increased the oxygen mobility. SEM, TEM, Raman spectroscopy and TGA of the used catalysts after dry reforming of methane showed that carbon formation rate was significantly reduced for the catalysts containing Ni nanoparticles embedded in ceria structure. Carbon deposits were not detected over Ni@CeZrO2 after 24 h of reaction. Therefore, the control of Ni particle size and the high oxygen mobility of Ni@CeZrO2 catalyst inhibited carbon deposition and favored the mechanism of carbon removal, promoting catalyst stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.