In this paper we formulate the initial-boundary value problems of accreting cylindrical and spherical nonlinear elastic solids in a geometric framework. It is assumed that the body grows as a result of addition of new (stress-free or pre-stressed) material on part of its boundary. We construct Riemannian material manifolds for a growing body with metrics explicitly depending on the history of applied external loads and deformation during accretion and the growth velocity. We numerically solve the governing equilibrium equations in the case of neo-Hookean solids and compare the accretion and residual stresses with those calculated using the linear mechanics of surface growth.
In this paper, we discuss the mechanics of anelastic bodies with respect to a Riemannian and a Euclidean geometric structure on the material manifold. These two structures provide two equivalent sets of governing equations that correspond to the geometrical and classical approaches to non-linear anelasticity. This paper provides a parallelism between the two approaches and explains how to go from one to the other. We work in the setting of the multiplicative decomposition of deformation gradient seen as a non-holonomic change of frame in the material manifold. This allows one to define, in addition to the two geometric structures, a Weitzenböck connection on the material manifold. We use this connection to express natural uniformity in a geometrically meaningful way. The concept of uniformity is then extended to the Riemannian and Euclidean structures. Finally, we discuss the role of non-uniformity in the form of material forces that appear in the configurational form of the balance of linear momentum with respect to the two structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.