The fermented manure derivative known as Preparation 500 is traditionally used as a field spray in biodynamic agriculture for maintaining and increasing soil fertility. This work aimed at characterizing the product from a microbiological standpoint and at assaying its bioactive properties. The approach involved molecular taxonomical characterization of the culturable microbial community; ARISA fingerprints of the total bacteria and fungal communities; chemical elemental macronutrient analysis via a combustion analyzer; activity assays for six key enzymes; bioassays for bacterial quorum sensing and chitolipooligosaccharide production; and plant hormonelike activity. The material was found to harbor a bacterial community of 2.38 × 10(8) CFU/g dw dominated by Grampositives with minor instances of Actinobacteria and Gammaproteobacteria. ARISA showed a coherence of bacterial assemblages in different preparation lots of the same year in spite of geographic origin. Enzymatic activities showed elevated values of beta-glucosidase, alkaline phosphatase, chitinase, and esterase. The preparation had no quorum sensing-detectable signal, and no rhizobial nod gene-inducing properties, but displayed a strong auxin-like effect on plants. Enzymatic analyses indicated a bioactive potential in the fertility and nutrient cycling contexts. The IAA activity and microbial degradation products qualify for a possible activity as soil biostimulants. Quantitative details and possible modes of action are discussed.
The base of the Rhaetian stage (Norian/Rhaetian boundary, NRB) is still awaiting for- mal designation by the International Commission on Stratigraphy. At present, only the 4.30-m-thick Steinbergkogel section (Austria) has been proposed as GSSP (Global Stratotype Section and Point) candidate for the base of the Rhaetian. Here we present data from the 63-m-thick Pignola-Abriola section (Southern Apennines, Italy) that we consider an alternative candidate for the Rhaetian GSSP. The Pignola-Abriola basinal section, represented by hemipelagic–pelagic carbonate successions belonging to the Lagonegro Basin, matches all the requirements for a GSSP: 1, it is well exposed with minimal structural deformation; 2, it is rich in age diagnostic fossils (e.g. conodonts and radiolarians); 3, it yields a geochemical record suitable for correlation (e.g. d13Corg/carb); and 4, it has a robust magnetostratigraphy and is correlated with the Newark APTS for age approximation of the NRB and additional Rhaetian bioevents. In the Pignola-Abriola section, we opt to place the NRB at the 44.4 metre level, coinci- dent with a prominent negative shift of ca. 6& of the d13Corg. This level is located 50 cm below the FAD of conodont Misikella posthernsteini s.s within the radiolarian Proparvicingula moniliformis Zone. Both the negative d13Corg shift and the FAD of Misikella posthernsteini occur within Pignola-Abriola magnetozone MPA-5r, at ~205.7 Ma, according to magnetostratigraphical correlation to the Newark APTS. We also illustrate the coeval Mt. Volturino stratigraphical section deposited below the cal- cite compensation depth (CCD) within the same Lagonegro Basin and characterized by a detailed radiolarian biostratigraphy and strong d13Corg negative shift around the NRB
The purpose of this work was to study vineyards of NE Italy seeking for features associated to the soil or plant compartment that could serve as proxies to infer productivity of the grape. Soils were characterized for physicochemical properties, mineralization of organic matter by a novel patented device based on in-situ microbial degradation of buried fibers, bacterial intergenic spacer length diversity (ARISA), enzyme activities and the expression of genes involved in response to abiotic stresses. Significant differences (p<0.05) were observed among vineyards for the parameters evaluated. The groupings obtained by ARISA were coherent with those obtained by PCA of soil properties. Vineyards endowed with higher productivity had soils showing higher enzyme activities along with neutral pH, higher TOC content and appropriate C/N ratio. These soils also showed higher mineralization of organic matter determined the novel in-soil thread degradation method. Grapevines of less productive vineyards had suboptimal leaf nitrogen and sulfur contents and showed up-regulation of WRKY, SuSy, PAL and STS1 genes. Results put in evidence useful correlations with yield that can be obtained up to several months earlier than harvest time upon analyzing selected indicators. An interesting link arises unifying soil biological properties, nutritional status, molecular stress response of grapevine and its production level.
A model procedure for the sustainable management of plant biomass related to wine production, namely vine branches from agricultural practices in the vineyard and marcs remaining after grapes crushing, was devised. An artificial humification process was set up that could respond to the needs of environmental sustainability and could be a safe way to be reintroduce in the vineyard part of the organic matter previously exported, thus contributing to recover or maintain vineyard soil fertility. Two different strategies for composting were tested, namely a static pile, made by branches and marcs, and a pile that was fed twice a year alternatively with vine branches and grape marcs. The experimentation lasted 710 days, during which environmental parameters, i.e. temperature and rainfalls were monitored. Growth dynamics of the principal functional groups of microorganism were followed. A characterization of the composted material was obtained by measuring several parameters among which, pH, carbon, nitrogen, sulfur and heavy metals content. The characteristics of the produced compost fulfill the requirements prescribed by the Italian legislation regarding the use of compost as soil amendment. Germination tests demonstrated the absence of phytotoxicity and conversely evidenced a stimulating activity towards root development
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.