In this paper we explore the isotropic stable motivic homotopy category constructed from the usual stable motivic homotopy category, following the work of Vishik on isotropic motives (see [26]), by killing anisotropic varieties. In particular, we focus on cohomology operations in the isotropic realm and study the structure of the isotropic Steenrod algebra. Then, we construct an isotropic version of the motivic Adams spectral sequence and apply it to find a complete description of the isotropic stable homotopy groups of the sphere spectrum, which happen to be isomorphic to the Ext-groups of the topological Steenrod algebra. At the end, we will see that this isomorphism is not only additive but respects higher products, completely identifying, as rings with higher structure, the cohomology of the classical Steenrod algebra with isotropic stable homotopy groups of spheres.
Extending (Smirnov and Vishik, Subtle Characteristic Classes, arXiv:1401.6661), we obtain a complete description of the motivic cohomology with $${{\,\mathrm{\mathbb {Z}}\,}}/2$$ Z / 2 -coefficients of the Nisnevich classifying space of the spin group $$Spin_n$$ S p i n n associated to the standard split quadratic form. This provides us with very simple relations among subtle Stiefel–Whitney classes in the motivic cohomology of Čech simplicial schemes associated to quadratic forms from $$I^3$$ I 3 , which are closely related to $$Spin_n$$ S p i n n -torsors over the point. These relations come from the action of the motivic Steenrod algebra on the second subtle Stiefel–Whitney class. Moreover, exploiting the relation between $$Spin_7$$ S p i n 7 and $$G_2$$ G 2 , we describe completely the motivic cohomology ring of the Nisnevich classifying space of $$G_2$$ G 2 . The result in topology was obtained by Quillen (Math Ann 194:197–212, 1971).
In this paper, we construct and study a Serre-type spectral sequence for motivic cohomology associated to a map of bisimplicial schemes with motivically cellular fiber. Then, we show how to apply it in order to approach the computation of the motivic cohomology of the Nisnevich classifying space of projective general linear groups. This naturally yields an explicit description of the motive of a Severi-Brauer variety in terms of twisted motives of its Čech simplicial scheme.
Following [14], we compute the motivic cohomology ring of the Nisnevich classifying space of the unitary group associated to the standard split hermitian form of a quadratic extension. This provides us with subtle characteristic classes which take value in the motivic cohomology of the Čech simplicial scheme associated to a hermitian form. Comparing these new classes with subtle Stiefel-Whitney classes arising in the orthogonal case, we obtain relations among the latter ones holding in the motivic cohomology of the Čech simplicial scheme associated to a quadratic form divisible by a 1-fold Pfister form. Moreover, we present a description of the motive of the torsor corresponding to a hermitian form in terms of its subtle characteristic classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.