The Mesoproterozoic Tieling Formation, near Jixian, northern China, contains thick beds of vertically branched, laterally elongate, columnar stromatolites. Carbonate mud is the primary component of both the stromatolites and their intervening matrix. Mud abundance is attributed to water column ‘whiting’ precipitation stimulated by cyanobacterial photosynthesis. Neomorphic microspar gives the stromatolites a ‘streaky’ microfabric and small mud flakes are common in the matrix. The columns consist of low‐relief, mainly non‐enveloping, laminae that show erosive truncation and well‐defined repetitive lamination. In plan view, the columns form disjunct elongate ridges <10 cm wide separated by narrow matrix‐filled runnels. The stromatolite surfaces were initially cohesive, rather than rigid, and prone to scour, and are interpreted as current aligned microbial mats that trapped carbonate mud. The pervasive ridge–runnel system suggests scale‐dependent biophysical feedback between: (i) carbonate mud supply; (ii) current duration, strength and direction; and (iii) growth and trapping by prolific mat growth. Together, these factors determined the size, morphology and arrangement of the stromatolite columns and their laminae, as well as their branching patterns, alignment and ridge–runnel spacing. Ridge–runnel surfaces resemble ripple mark patterns, but whether currents were parallel and/or normal to stromatolite alignment remains unclear. The formation and preservation of Tieling columns required plentiful supply of carbonate mud, mat‐building microbes well‐adapted to cope with this abundant sediment, and absence of both significant early lithification and bioturbation. These factors were time limited, and Tieling stromatolites closely resemble coeval examples in the Belt‐Purcell Supergroup of Laurentia. The dynamic interactions between mat growth, currents and sediment supply that determined the shape of Tieling columns contributed to the morphotypical diversity that characterizes mid–late Proterozoic branched stromatolites.
Pendant bioconstructions occur within submerged caves in the Plemmirio Marine Protected Area in SE Sicily, Italy. These rigid structures, here termed biostalactites, were synsedimentarily lithified by clotted-peloidal microbial carbonate that has a high bacterial lipid biomarker content with abundant compounds derived from sulfate-reducing bacteria. The main framework builders are polychaete serpulid worms, mainly Protula with subordinate Semivermilia and Josephella. These polychaetes have lamellar and/or fibrillar wall structure. In contrast, small agglutinated terebellid tubes, which are a minor component of the biostalactites, are discontinuous and irregular with a peloidal micritic microfabric. The peloids, formed by bacterial sulfate reduction, appear to have been utilized by terebellids to construct tubes in an environment where other particulate sediment is scarce. We suggest that the bacteria obtained food from the worms in the form of fecal material and/or from the decaying tissue of surrounding organisms and that the worms obtained peloidal micrite with which to construct their tubes, either as grains and/or as tube encompassing biofilm. Peloidal worm tubes have rarely been reported in the recent but closely resemble examples in the geological record that extend back at least to the early Carboniferous. This suggests a long-lived commensal relationship between some polychaete worms and heterotrophic, especially sulfate-reducing, bacteria.
Following introduction of the term 'nummulite bank', there has been debate regarding interpretation of these types of deposits as autochthonous (automicrite) or allochthonous (detrital micrite). These banks are made up of large foraminifera and ill-defined fine-grained components. The fine-grained components consist mainly of micrites. The recognition of automicrite has deep implications for the synsedimentary cementation and stabilization of the bank. In order to distinguish between automicrite and detrital micrite, the nanomorphology, geochemistry and organic matter remains in the microfacies of a nummulite bank in the Middle Eocene of Monte Saraceno (Gargano, Southern Italy) were analysed. Optical and scanning electron microscope investigations showed that the micrites have been recrystallized to aggrading microsparite. Epifluorescence observations on selected micrite/microsparite areas with peloidal texture revealed the presence of organic matter. Scanning electron microscope analyses on epifluorescent micrites showed that the microbial peloids have smaller crystal sizes than those in organic matterdepleted areas. The geochemical characterization of extracted organic matter, performed through the functional group analyses by Fourier transform-infrared spectroscopy, shows strong prevalence of the aromatic fraction over the aliphatic and carboxylic ones. These characteristics of organic compounds indicate both their thermal maturation and their likely derivation from degradation of bacterial communities. The local presence of peloidal antigravity textures, bright epifluorescence and organic molecules in clotted peloidal areas suggest that the metabolic activity of microbial communities could have induced precipitation of these micrites and, consequently, the syndepositional cementation of the nummulite bank. This type of cementation can rapidly stabilize sediments and promote the depositional bank geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.