50 years ago (1959) in a series of publications by Leonov, a detailed analytical study of the nested period adding bifurcation structure occurring in piecewise-linear discontinuous 1D maps was presented. The results obtained by Leonov are barely known, although they allow the analytical calculation of border-collision bifurcation subspaces in an elegant and much more efficient way than it is usually done. In this work we recall Leonov's approach and explain why it works. Furthermore, we slightly improve the approach by avoiding an unnecessary coordinate transformation, and also demonstrate that the approach can be used not only for the calculation of border-collision bifurcation curves.
We study a heterogeneous duopolistic Cournotian game, in which the firms, producing a homogeneous good, have reduced rationality and respectively adopt a "Local Monopolistic Approximation" (LMA) and a gradient-based approach with endogenous reactivity, in an economy characterized by isoelastic demand function and linear total costs. We give conditions on reactivity and marginal costs under which the solution converges to the Cournot-Nash equilibrium. Moreover, we compare the stability regions of the proposed oligopoly to a similar one, in which the LMA firm is replaced by a best response firm, which is more rational than the LMA firm. We show that, depending on costs ratio, the equilibrium can lose its stability in two different ways, through both a flip and a Neimark-Sacker bifurcation. We show that the nonlinear, noninvertible map describing the model can give rise to several coexisting stable attractors (multistability). We analytically investigate the shape of the basins of attractions, in particular proving the existence of regions known in the literature as lobes.
We develop a three-dimensional nonlinear dynamic model in which the stock markets of two countries are linked through the foreign exchange market. Connections are due to the trading activity of heterogeneous speculators. Using analytical and numerical tools, we seek to explore how the coupling of the markets may affect the emergence of bull and bear market dynamics. The dimension of the model can be reduced by restricting investors' trading activity, which enables the dynamic analysis to be performed stepwise, from low-dimensional cases up to the full three-dimensional model. In our paper we focus mainly on the dynamics of the one-and twodimensional cases, with numerical experiments and some analytical results, and also show that the main features persist in the three-dimensional model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.