Fig. 1. Given example data, we learn an autoregressive conditional variational autoencoder (VAE) that predicts the next pose one frame at a time. A variety of task-specific control policies can then be learned on top of this model.A fundamental problem in computer animation is that of realizing purposeful and realistic human movement given a sufficiently-rich set of motion capture clips. We learn data-driven generative models of human movement using autoregressive conditional variational autoencoders, or Motion VAEs. The latent variables of the learned autoencoder define the action space for the movement and thereby govern its evolution over time. Planning or control algorithms can then use this action space to generate desired motions. In particular, we use deep reinforcement learning to learn controllers that achieve goal-directed movements. We demonstrate the effectiveness of the approach on multiple tasks. We further evaluate system-design choices and describe the current limitations of Motion VAEs.
Interactively synthesizing novel combinations and variations of character movements from different motion skills is a key problem in computer animation. In this paper, we propose a deep learning framework to produce a large variety of martial arts movements in a controllable manner from raw motion capture data. Our method imitates animation layering using neural networks with the aim to overcome typical challenges when mixing, blending and editing movements from unaligned motion sources. The framework can synthesize novel movements from given reference motions and simple user controls, and generate unseen sequences of locomotion, punching, kicking, avoiding and combinations thereof, but also reconstruct signature motions of different fighters, as well as close-character interactions such as clinching and carrying by learning the spatial joint relationships. To achieve this goal, we adopt a modular framework which is composed of the motion generator and a set of different control modules. The motion generator functions as a motion manifold that projects novel mixed/edited trajectories to natural full-body motions, and synthesizes realistic transitions between different motions. The control modules are task dependent and can be developed and trained separately by engineers to include novel motion tasks, which greatly reduces network iteration time when working with large-scale datasets. Our modular framework provides a transparent control interface for animators that allows modifying or combining movements after network training, and enables iterative adding of control modules for different motion tasks and behaviors. Our system can be used for offline and online motion generation alike, and is relevant for real-time applications such as computer games.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.