Detection of Premature Ventricular Contractions (PVC) is of crucial importance in the cardiology field, not only to improve the health system but also to reduce the workload of experts who analyze electrocardiograms (ECG) manually. PVC is a non-harmful common occurrence represented by extra heartbeats, whose diagnosis is not always easily identifiable, especially when done by long-term manual ECG analysis. In some cases, it may lead to disastrous consequences when associated with other pathologies. This work introduces an approach to identify PVCs using machine learning techniques without feature extraction and cross-validation techniques. In particular, a group of six classifiers has been used: Decision Tree, Random Forest, Long-Short Term Memory (LSTM), Bidirectional LSTM, ResNet-18, MobileNetv2, and ShuffleNet. Two types of experiments have been performed on data extracted from the MIT-BIH Arrhythmia database: (i) the original dataset and (ii) the balanced dataset. MobileNetv2 came in first in both experiments with high performance and promising results for PVCs’ final diagnosis. The final results showed 99.90% of accuracy in the first experiment and 99.00% in the second one, despite no feature detection techniques were used. The approach we used, which was focused on classification without using feature extraction and cross-validation techniques, allowed us to provide excellent performance and obtain better results. Finally, this research defines as first step toward understanding the explanations for deep learning models’ incorrect classifications.
Background This research aims to increase our knowledge of amyloidoses. These disorders cause incorrect protein folding, affecting protein functionality (on structure). Fibrillar deposits are the basis of some wellknown diseases, such as Alzheimer, Creutzfeldt–Jakob diseases and type II diabetes. For many of these amyloid proteins, the relative precursors are known. Discovering new protein precursors involved in forming amyloid fibril deposits would improve understanding the pathological processes of amyloidoses. Results A new classifier, called ENTAIL, was developed using over than 4000 molecular descriptors. ENTAIL was based on the Naive Bayes Classifier with Unbounded Support and Gaussian Kernel Type, with an accuracy on the test set of 81.80%, SN of 100%, SP of 63.63% and an MCC of 0.683 on a balanced dataset. Conclusions The analysis carried out has demonstrated how, despite the various configurations of the tests, performances are superior in terms of performance on a balanced dataset.
Electrocardiogram (ECG) analysis has been used to identify different heart problems and deep learning is emerging as a common tool to analyse ECGs. Premature ventricular contraction (PVC) is the most common cause of abnormal heartbeats; in most cases this is harmless but under specific conditions, it can lead to a life-threatening cardiac disease. Automated PVC detection in this scenario is a task of significant importance for relieving the heavy workloads of experts in the manual analysis of long-term ECGs. To identify PVCs, this research aims to use the MIT-BIH Arrhythmia Database to classify QRS complexes using five different deep neural networks: Long Short Term Memory, AlexNet, GoogleNet, Inception V3 and ResNet-50. The results showed high efficiency and reliability in the final diagnoses during two separate experiments (one with the entire dataset and the other with a balanced dataset). The ResNet-50 was the first experiment's best classifier (accuracy = 99.8%, F1-score = 99.2%), and the second experiment's best classifier was Inception V3 (accuracy = 98.8%, F1-score=98.8%). Relevant information, in this research, was extrapolated from a study of the confusion matrix to conduct a "failure analysis" to understand where and why the classifiers made incorrect classifications.
Background: Melanoma is one of the deadliest tumors in the world. Early detection is critical for first-line therapy in this tumor pathology and it remains challenging due to the need for histological analysis to ensure correctness in diagnosis. Therefore, multiple computer-aided diagnosis (CAD) systems working on melanoma images were proposed to mitigate the need of a biopsy. However, although the high global accuracy is declared in literature results, the CAD systems for the health fields must focus on the lowest false negative rate (FNR) possible to qualify as a diagnosis support system. The final goal must be to avoid classification type 2 errors to prevent life-threatening situations. Another goal could be to create an easy-to-use system for both physicians and patients. Results: To achieve the minimization of type 2 error, we performed a wide exploratory analysis of the principal convolutional neural network (CNN) architectures published for the multiple image classification problem; we adapted these networks to the melanoma clinical image binary classification problem (MCIBCP). We collected and analyzed performance data to identify the best CNN architecture, in terms of FNR, usable for solving the MCIBCP problem. Then, to provide a starting point for an easy-to-use CAD system, we used a clinical image dataset (MED-NODE) because clinical images are easier to access: they can be taken by a smartphone or other hand-size devices. Despite the lower resolution than dermoscopic images, the results in the literature would suggest that it would be possible to achieve high classification performance by using clinical images. In this work, we used MED-NODE, which consists of 170 clinical images (70 images of melanoma and 100 images of naevi). We optimized the following CNNs for the MCIBCP problem: Alexnet, DenseNet, GoogleNet Inception V3, GoogleNet, MobileNet, ShuffleNet, SqueezeNet, and VGG16. Conclusions: The results suggest that a CNN built on the VGG or AlexNet structure can ensure the lowest FNR (0.07) and (0.13), respectively. In both cases, discrete global performance is ensured. 73% (accuracy), 82% (sensitivity) and 59% (specificity) for VGG; 89% (accuracy), 87% (sensitivity) and 90% (specificity) for AlexNet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.