BackgroundMR-Egger regression has recently been proposed as a method for Mendelian randomization (MR) analyses incorporating summary data estimates of causal effect from multiple individual variants, which is robust to invalid instruments. It can be used to test for directional pleiotropy and provides an estimate of the causal effect adjusted for its presence. MR-Egger regression provides a useful additional sensitivity analysis to the standard inverse variance weighted (IVW) approach that assumes all variants are valid instruments. Both methods use weights that consider the single nucleotide polymorphism (SNP)-exposure associations to be known, rather than estimated. We call this the `NO Measurement Error’ (NOME) assumption. Causal effect estimates from the IVW approach exhibit weak instrument bias whenever the genetic variants utilized violate the NOME assumption, which can be reliably measured using the F-statistic. The effect of NOME violation on MR-Egger regression has yet to be studied.MethodsAn adaptation of the I2 statistic from the field of meta-analysis is proposed to quantify the strength of NOME violation for MR-Egger. It lies between 0 and 1, and indicates the expected relative bias (or dilution) of the MR-Egger causal estimate in the two-sample MR context. We call it IGX2. The method of simulation extrapolation is also explored to counteract the dilution. Their joint utility is evaluated using simulated data and applied to a real MR example.ResultsIn simulated two-sample MR analyses we show that, when a causal effect exists, the MR-Egger estimate of causal effect is biased towards the null when NOME is violated, and the stronger the violation (as indicated by lower values of IGX2), the stronger the dilution. When additionally all genetic variants are valid instruments, the type I error rate of the MR-Egger test for pleiotropy is inflated and the causal effect underestimated. Simulation extrapolation is shown to substantially mitigate these adverse effects. We demonstrate our proposed approach for a two-sample summary data MR analysis to estimate the causal effect of low-density lipoprotein on heart disease risk. A high value of IGX2 close to 1 indicates that dilution does not materially affect the standard MR-Egger analyses for these data.ConclusionsCare must be taken to assess the NOME assumption via the IGX2 statistic before implementing standard MR-Egger regression in the two-sample summary data context. If IGX2 is sufficiently low (less than 90%), inferences from the method should be interpreted with caution and adjustment methods considered.
Mendelian randomization (MR) uses genetic data to probe questions of causality in epidemiological research, by invoking the Instrumental Variable (IV) assumptions. In recent years, it has become commonplace to attempt MR analyses by synthesising summary data estimates of genetic association gleaned from large and independent study populations. This is referred to as two‐sample summary data MR. Unfortunately, due to the sheer number of variants that can be easily included into summary data MR analyses, it is increasingly likely that some do not meet the IV assumptions due to pleiotropy. There is a pressing need to develop methods that can both detect and correct for pleiotropy, in order to preserve the validity of the MR approach in this context. In this paper, we aim to clarify how established methods of meta‐regression and random effects modelling from mainstream meta‐analysis are being adapted to perform this task. Specifically, we focus on two contrastin g approaches: the Inverse Variance Weighted (IVW) method which assumes in its simplest form that all genetic variants are valid IVs, and the method of MR‐Egger regression that allows all variants to violate the IV assumptions, albeit in a specific way. We investigate the ability of two popular random effects models to provide robustness to pleiotropy under the IVW approach, and propose statistics to quantify the relative goodness‐of‐fit of the IVW approach over MR‐Egger regression. © 2017 The Authors. Statistics in Medicine Published by JohnWiley & Sons Ltd
High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic, pulse pressure) to date in over one million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also reveal shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.