Background Two-sample summary-data Mendelian randomization (MR) incorporating multiple genetic variants within a meta-analysis framework is a popular technique for assessing causality in epidemiology. If all genetic variants satisfy the instrumental variable (IV) and necessary modelling assumptions, then their individual ratio estimates of causal effect should be homogeneous. Observed heterogeneity signals that one or more of these assumptions could have been violated. Methods Causal estimation and heterogeneity assessment in MR require an approximation for the variance, or equivalently the inverse-variance weight, of each ratio estimate. We show that the most popular ‘first-order’ weights can lead to an inflation in the chances of detecting heterogeneity when in fact it is not present. Conversely, ostensibly more accurate ‘second-order’ weights can dramatically increase the chances of failing to detect heterogeneity when it is truly present. We derive modified weights to mitigate both of these adverse effects. Results Using Monte Carlo simulations, we show that the modified weights outperform first- and second-order weights in terms of heterogeneity quantification. Modified weights are also shown to remove the phenomenon of regression dilution bias in MR estimates obtained from weak instruments, unlike those obtained using first- and second-order weights. However, with small numbers of weak instruments, this comes at the cost of a reduction in estimate precision and power to detect a causal effect compared with first-order weighting. Moreover, first-order weights always furnish unbiased estimates and preserve the type I error rate under the causal null. We illustrate the utility of the new method using data from a recent two-sample summary-data MR analysis to assess the causal role of systolic blood pressure on coronary heart disease risk. Conclusions We propose the use of modified weights within two-sample summary-data MR studies for accurately quantifying heterogeneity and detecting outliers in the presence of weak instruments. Modified weights also have an important role to play in terms of causal estimation (in tandem with first-order weights) but further research is required to understand their strengths and weaknesses in specific settings.
Numerous genetic loci influence systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans 1-3. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N=74,064) and follow-up studies (N=48,607), we identified at genome-wide significance (P= 2.7×10-8 to P=2.3×10-13) four novel PP loci (at 4q12 near CHIC2/PDGFRAI, 7q22.3 near PIK3CG, 8q24.12 in NOV, 11q24.3 near ADAMTS-8), two novel MAP loci (3p21.31 in MAP4, 10q25.3 near ADRB1) and one locus associated with both traits (2q24.3 near FIGN) which has recently been associated with SBP in east Asians. For three of the novel PP signals, the estimated effect for SBP was opposite to that for DBP, in contrast to the majority of common SBP- and DBP-associated variants which show concordant effects on both traits. These findings indicate novel genetic mechanisms underlying blood pressure variation, including pathways that may differentially influence SBP and DBP.
Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project–based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA. Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.
Electrocardiographic PR interval measures atrio-ventricular depolarization and conduction, and abnormal PR interval is a risk factor for atrial fibrillation and heart block. Our genome-wide association study of over 92,000 European-descent individuals identifies 44 PR interval loci (34 novel). Examination of these loci reveals known and previously not-yet-reported biological processes involved in cardiac atrial electrical activity. Genes in these loci are over-represented in cardiac disease processes including heart block and atrial fibrillation. Variants in over half of the 44 loci were associated with atrial or blood transcript expression levels, or were in high linkage disequilibrium with missense variants. Six additional loci were identified either by meta-analysis of ~105,000 African and European-descent individuals and/or by pleiotropic analyses combining PR interval with heart rate, QRS interval, and atrial fibrillation. These findings implicate developmental pathways, and identify transcription factors, ion-channel genes, and cell-junction/cell-signaling proteins in atrio-ventricular conduction, identifying potential targets for drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.