The fault diagnosis and prognosis of low speed machines remains a difficult problem despite remarkable advances in the conditional monitoring domain. The Rolling-element bearing is a vital part of these machines and its failure is one of the main causes of machine breakdown. In order to have an efficient maintenance strategy, fault diagnosis of a bearing and time estimation of its remaining useful life is needed. However, conventional vibration analysis at very low speeds generally fails to detect vibrations issued from a faulty bearing due to its low energy, high and variable loading conditions and to the noisy environment generated by other mechanical components of low speed machines such as gearing systems. In this work, instantaneous angular speed (IAS)-based fault diagnosis is introduced in order to compensate for the shortcoming of conventional monitoring techniques since it is strictly synchronized to shaft rotation and much less dependent on the transfer path between the defect and the sensor contrary to vibration and acoustic emission analysis. At very low speeds and in the case of a seeded spall on the bearing’s race, the shaft IAS reveals the shaft dynamical behavior when the rolling element passes into the spall. It is proven that this behavior is different when entering the spall than when exiting. The determination of entrance and exit moments allows a precise fault size estimation which is a critical step for bearing prognosis. The proposed fault size estimation method is tested on different seeded spall widths at different low speeds. The results gave a satisfactory fault width estimation and show that IAS measurement is a promising tool for the health monitoring of very low speed machines.
Numerous workers are exposed to vibrations which can turn out to be fatal for the health. Athletes can be included in this population, in particular cyclists who are exposed to vibration due to the irregularity of the road. This nuisance depends of the duration of exposure and the range of vibrations. While the worker is mostly directly excited by a vibrating system, the cyclist is indirectly subjected to it. He undergoes the vibrations of an excited sub-structure which is the bicycle. So the bicycle plays the role of a vibration filter or amplifier. In this paper we propose to (i) study the transmission of vibrations to the cyclist after excitation on a paving road, (ii) calculate the limit time of exposure to this type of excitation rate by the use of the standard ISO 5349 and the European directive 2002/44/EC, and (iii) compare the weighting curve of the standard with a vibrations transmissibility curve obtained between the collarbone and the stem. For this particular case of an excited sub-structure, a weighting curve is proposed by considering the first modal frequency of the bicycle.
The musculo-skeletal response of athletes to various activities during training exercises has become a critical issue in order to optimize their performance and minimize injuries. However, dynamic and kinematic measures of an athlete’s activity are generally limited by constraints in data collection and technology. Thus, the choice of reliable and accurate sensors is crucial for gathering data in indoor and outdoor conditions. The aim of this study is to validate the use of the accelerometer of a high sampling rate (13440.277778emHz) Inertial Measurement Unit (IMU) in the frame of running activities. To this end, two validation protocols are imposed: a classical one on a shaker, followed by another one during running, the IMU being attached to a test subject. For each protocol, the response of the IMU Accelerometer (IMUA) is compared to a calibrated industrial accelerometer, considered as the gold standard for dynamic and kinematic data collection. The repeatability, impact of signal frequency and amplitude (on shaker) as well as the influence of speed (while running) are investigated. Results reveal that the IMUA exhibits good repeatability. Coefficient of Variation CV is 1%()8.58±0.06m/normals2 on the shaker and 3%()26.65±0.69m/normals2 while running. However, the shaker test shows that the IMUA is affected by the signal frequency (error exceeds 10% beyond 800.277778emHz), an observation confirmed by the running test. Nevertheless, the IMUA provides a reliable measure in the range 0–100 Hz, i.e., the most relevant part in the energy spectrum over the range 0–150 Hz during running. In our view, these findings emphasize the validity of IMUs for the measurement of acceleration during running.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.