Microwave spectroscopy of individual vortex-state magnetic nano-disks in a perpendicular bias magnetic field, H, is performed using a magnetic resonance force microscope (MRFM). It reveals the splitting induced by H on the gyrotropic frequency of the vortex core rotation related to the existence of the two stable polarities of the core. This splitting enables spectroscopic detection of the core polarity. The bistability extends up to a large negative (antiparallel to the core) value of the bias magnetic field Hr, at which the core polarity is reversed. The difference between the frequencies of the two stable rotational modes corresponding to each core polarity is proportional to H and to the ratio of the disk thickness to its radius. Simple analytic theory in combination with micromagnetic simulations give quantitative description of the observed bistable dynamics.Magnetic vortices are singular topological states found in the equilibrium magnetic configuration of sub-micron size ferromagnetic dots [1,2]. In a certain range of dot aspect ratios (ratio β = t/R of the dot thickness t to its radius R) the equilibrium ground state of the static magnetization consists of the curling in-plane magnetization and a nanometer size core of the out-of-plane magnetization at the dot center. The magnetization of the vortex core can point either up or down, both polarities p = ±1 being degenerate at zero field. This bi-stable property of magnetic vortices, as well as the switching from one polarity to the other, have been intensively studied in the past few years because of their possible applications in magnetic storage devices [3,4,5,6]. It has already been established : (i) that the lowest excitation mode of the vortex state is the gyrotropic mode corresponding to a rotation of the vortex core about the dot center, (ii) that the frequency of this mode is linearly proportional the dot aspect ratio β [7], and (iii) that the sense of gyration of the vortex core is determined by a right-hand rule to the core polarity [4].In this Letter, we report that by using the exquisitely sensitive method of magnetic resonance force microscopy (MRFM) [8], we were able to observe bistability of the vortex core dynamics in a single magnetic disk subjected to a perpendicular bias magnetic field, that was varied in a wide range from positive (parallel to the vortex core) to negative (antiparallel to the vortex core) values. We demonstrate that in a certain range of the bias field magnitudes there are two stable gyrotropic modes of the vortex core rotation having different frequencies and opposite circular polarizations, and corresponding to opposite orientations of the vortex core relative to the direction of the bias magnetic field. The difference in frequencies of these two stable gyrotropic modes is proportional to the magnitude of the applied bias field, H, and, also, to the dot aspect ratio β. We believe that this effect might be important for the development of novel magnetic memory elements. It allows one to determine the polarity of the ...
The secondary ion microscope described here allows to obtain the simultaneous registration of chemical and isotopic distribution maps of several elements composing the sample. The instrument has been specially designed to optimize both sensitivity and selectivity; bombardment with primary Cs+ ions to increase the ionization yields of negative secondary ions, efficient collection of secondary ions at the target surface, matching of the secondary ion beam etendue with the acceptance of the mass spectrometer working at high mass resolution, spectrometer with parallel detection capabilities. The probe diameter can be made as low as 30 nm and ion induced electron images registered at the same time as ion images. Presently, four ion micrographs are obtained simultaneously over a field of view up to 20 x 20 micro m2 containing up to 512 x 512 pixels. Examples are shown with an ion probe diameter of 0.1 microm.
We review how a magnetic resonance force microscope (MRFM) can be applied to perform ferromagnetic resonance (FMR) spectroscopy of individual sub-micron size samples. We restrict our attention to a thorough study of the spin-wave eigen-modes excited in permalloy (Py) disks patterned out of the same 43.3 nm thin film. The disks have a diameter of either 1.0 or 0.5 µm and are quasi-saturated by a perpendicularly applied magnetic field. It is shown that quantitative spectroscopic information can be extracted from the MRFM measurements. In particular, the data are extensively compared with complementary approximate models of the dynamical susceptibility: i) a 2D analytical model, which assumes an homogeneous magnetization dynamics along the thickness and ii) a full 3D micromagnetic simulation, which assumes an homogeneous magnetization dynamics below a characteristic length scale c and which approximates the cylindrical sample volume by a discretized representation with regular cubic mesh of lateral size c = 3.9 nm. In our analysis, the distortions due to a breaking of the axial symmetry are taken into account, both models incorporating the possibility of a small misalignment between the applied field and the normal of the disks.
In this study we elaborate on the recent concept of metagratings proposed in Ra'di et al. [Phys. Rev. Lett. 119, 067404 (2017)] for efficient manipulation of reflected waves. Basically, a metagrating is a set of 1D arrays of polarization line currents which are engineered to cancel scattering in undesirable diffraction orders. We consider a general case of metagratings composed of N polarization electric line currents per supercell. This generalization is a necessary step to totally control diffraction patterns. We show that a metagrating having N equal to the number of plane waves scattered in the far-field can be used for controlling the diffraction pattern. To validate the developed theoretical approach, anomalous and multichannel reflections are demonstrated with 3D full-wave simulations in the microwave regime at 10 GHz. The results can be interesting for the metamaterials community as allow one to significantly decrease the number of used elements and simplify the design of wavefront manipulation devices, what is very convenient for optical and infra-red frequency ranges. Our findings also may serve as a way for development of efficient tunable antennas in the microwave domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.