Cystoseira barbata is an edible brown seaweed, traditionally used in the Black Sea area as functional food. Both alginate and brown seaweed biomass are well known for their potential use as adsorbents for heavy metals. Alginate was extracted from C. barbata recovered from the Romanian coast on the Black Sea with a yield of 19 ± 1.5% (w/w). The structural data for the polysaccharide was obtained by HPSEC-MALS, 1H-NMR. The M/G ratio was determined to be 0.64 with a molecular weight of 126.6 kDa with an intrinsic viscosity of 406.2 mL/g. Alginate beads were used and their adsorption capacity with respect to Pb2+ and Cu2+ ions was determined. The adsorption kinetics of C. barbata dry biomass was evaluated and it was shown to have an adsorption capacity of 279.2 ± 7.5 mg/g with respect to Pb2+, and 69.3 ± 2 with respect to Cu2+. Alginate in the form of beads adsorbs a maximum of 454 ± 4.7 mg/g of Pb2+ ions and 107.3 ± 1.7 mg/g of Cu2+ ions.
In this article, a complete radiative transfer approach for estimating incident photon flux density by actinometry is presented that opens the door to investigation of large-scale intensified photoreactors. The approach is based on an original concept: the analysis of the probability that a photon entering the reaction volume is absorbed by the actinometer. Whereas this probability is assumed to be equal to one in classical actinometry, this assumption can no longer be satisfied in many practical situations in which optical thicknesses are low. Here we remove this restriction by using most recent advances in the field of radiative transfer Monte Carlo, in order to rigorously evaluate the instantaneous absorption-probability as a function of conversion. Implementation is performed in EDStar, an open-source development environment that enables straightforward simulation of reactors with any geometry (directly provided by their CAD-file), with the very same Monte Carlo algorithm. Experimental investigations are focused on Reinecke salt photodissociation in two reactors designed for the study of natural and artificial photosynthesis. The first reactor investigated serves as reference configuration: its simple torus geometry allows to compare flux densities measured with quantum sensors and actinometry. Validations and analysis are carried out on this reactor. Then, the approach is implemented on a 25 L photobioreactor with complex geometry corresponding to one thousand light-diffusing optical fibers distributing incident photons within the reaction volume. Results show that classical actinometry neglecting radiative transfer can lead to 50 percent error when measuring incident flux density for such reactors. Finally, we show how this radiative transfer approach paves the way for analyzing high conversion as a mean to investigate angular distribution of incident photons. Highlights: A novel and improved extent of actinometry to determine photon flux is presented. Latest advances in Monte Carlo Method for radiative transfer have been used. Photon absorption probability by the actinometer is defined as a new tool. Complex geometries, pilot plant photo(bio)reactors can now be easily addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.