Diabetic Retinopathy is the most prevalent cause of avoidable vision impairment, mainly affecting the working-age population in the world. Recent research has given a better understanding of the requirement in clinical eye care practice to identify better and cheaper ways of identification, management, diagnosis and treatment of retinal disease. The importance of diabetic retinopathy screening programs and difficulty in achieving reliable early diagnosis of diabetic retinopathy at a reasonable cost needs attention to develop computer-aided diagnosis tool. Computer-aided disease diagnosis in retinal image analysis could ease mass screening of populations with diabetes mellitus and help clinicians in utilizing their time more efficiently. The recent technological advances in computing power, communication systems, and machine learning techniques provide opportunities to the biomedical engineers and computer scientists to meet the requirements of clinical practice. Diverse and representative retinal image sets are essential for developing and testing digital screening programs and the automated algorithms at their core. To the best of our knowledge, IDRiD (Indian Diabetic Retinopathy Image Dataset), is the first database representative of an Indian population. It constitutes typical diabetic retinopathy lesions and normal retinal structures annotated at a pixel level. The dataset provides information on the disease severity of diabetic retinopathy, and diabetic macular edema for each image. This makes it perfect for development and evaluation of image analysis algorithms for early detection of diabetic retinopathy.
Prostate cancer is the second most diagnosed cancer of men all over the world. In the last few decades, new imaging techniques based on Magnetic Resonance Imaging (MRI) have been developed to improve diagnosis. In practise, diagnosis can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In this regard, computer-aided detection and computer-aided diagnosis systems have been designed to help radiologists in their clinical practice. Research on computer-aided systems specifically focused for prostate cancer is a young technology and has been part of a dynamic field of research for the last 10 years. This survey aims to provide a comprehensive review of the state-of-the-art in this lapse of time, focusing on the different stages composing the work-flow of a computer-aided system. We also provide a comparison between studies and a discussion about the potential avenues for future research. In addition, this paper presents a new public online dataset which is made available to the research community with the aim of providing a common evaluation framework to overcome some of the current limitations identified in this survey.
Prostate segmentation is a challenging task, and the challenges significantly differ from one imaging modality to another. Low contrast, speckle, micro-calcifications and imaging artifacts like shadow poses serious challenges to accurate prostate segmentation in transrectal ultrasound (TRUS) images. However in magnetic resonance (MR) images, superior soft tissue contrast highlights large variability in shape, size and texture information inside the prostate. In contrast poor soft tissue contrast between prostate and surrounding tissues in computed tomography (CT) images pose a challenge in accurate prostate segmentation. This article reviews the methods developed for prostate gland segmentation TRUS, MR and CT images, the three primary imaging modalities that aids prostate cancer diagnosis and treatment. The objective of this work is to study the key similarities and differences among the different methods, highlighting their strengths and weaknesses in order to assist in the choice of an appropriate segmentation methodology. We define a new taxonomy for prostate segmentation strategies that allows first to group the algorithms and then to point out the main advantages and drawbacks of each strategy. We provide a comprehensive description of the existing methods in all TRUS, MR and CT modalities, highlighting their key-points and features. Finally, a discussion on choosing the most appropriate segmentation strategy for a given imaging modality is provided. A quantitative comparison of the results as reported in literature is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.