Semi-supervised learning is one of the important topics in machine learning, concerning with pattern classification where only a small subset of data is labeled. In this paper, a new network-based (or graph-based) semi-supervised classification model is proposed. It employs a combined random-greedy walk of particles, with competition and cooperation mechanisms, to propagate class labels to the whole network. Due to the competition mechanism, the proposed model has a local label spreading fashion, i.e., each particle only visits a portion of nodes potentially belonging to it, while it is not allowed to visit those nodes definitely occupied by particles of other classes. In this way, a "divide-and-conquer" effect is naturally embedded in the model. As a result, the proposed model can achieve a good classification rate while exhibiting low computational complexity order in comparison to other network-based semi-supervised algorithms. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method.
Object selection refers to the mechanism of extracting objects of interest while ignoring other objects and background in a given visual scene. It is a fundamental issue for many computer vision and image analysis techniques and it is still a challenging task to artificial visual systems. Chaotic phase synchronization takes place in cases involving almost identical dynamical systems and it means that the phase difference between the systems is kept bounded over the time, while their amplitudes remain chaotic and may be uncorrelated. Instead of complete synchronization, phase synchronization is believed to be a mechanism for neural integration in brain. In this paper, an object selection model is proposed. Oscillators in the network representing the salient object in a given scene are phase synchronized, while no phase synchronization occurs for background objects. In this way, the salient object can be extracted. In this model, a shift mechanism is also introduced to change attention from one object to another. Computer simulations show that the model produces some results similar to those observed in natural vision systems.
Many interactive image segmentation techniques are based on semisupervised learning. The user may label some pixels from each object and the SSL algorithm will propagate the labels from the labeled to the unlabeled pixels, finding object boundaries. This paper proposes a new SSL graph-based interactive image segmentation approach, using undirected and unweighted kNN graphs, from which the unlabeled nodes receive contributions from other nodes (either labeled or unlabeled). It is simpler than many other techniques, but it still achieves significant classification accuracy in the image segmentation task. Computer simulations are performed using some real-world images, extracted from the Microsoft GrabCut dataset. The segmentation results show the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.