Background and purpose Friedreich's ataxia (FRDA) is the most common autosomal‐recessive ataxia worldwide. It is characterized by early onset, sensory abnormalities and slowly progressive ataxia. All magnetic resonance imaging (MRI)‐based studies have focused on the evaluation of adult patients. Therefore, we designed a cross‐sectional multimodal MRI‐based study to investigate the anatomical substrates involved in the early stages of FRDA. Methods We enrolled 37 patients (12 children) and 38 controls. All subjects underwent MRI in a 3T device to assess gray and white matter. We used measures from FreeSurfer and CERES to evaluate the cerebral and cerebellar cortices. The T1 multiatlas assessed deep gray matter. The diffusion tensor imaging multiatlas was used to investigate microstructural abnormalities in brain white matter and SpineSeg was used to assess the cervical spinal cord. All analyses were corrected for multiple comparisons. Results Comparison with age‐matched controls showed that pediatric patients have spinal cord, inferior cerebellar peduncle and red nucleus damage. In contrast, adult patients showed more widespread white matter damage than pediatric patients. With regard to gray matter, we found cortical thinning at the left central sulcus and volumetric reduction in the thalami and hippocampi only in adult patients. Finally, values of fractional anisotropy in adult patients and radial diffusivity in pediatric patients from the inferior cerebellar peduncle correlated with disease duration and ataxia severity, respectively. Conclusions Structural damage in FRDA begins in the spinal cord and inferior cerebellar peduncle as well as the red nucleus, and progresses to cerebral areas in adulthood. These results shed some light on the early stages of FRDA and highlight potential neuroimaging markers for therapeutic trials.
A BS TRACT: Background: Hereditary spastic paraplegia presents spasticity as the main clinical manifestation, reducing gait quality and producing incapacity. Management with botulinum toxin type A (BoNT-A) is not well elucidated. The objective of the current study was to evaluate the efficacy and safety of BoNT-A in patients with hereditary spastic paraplegias. Methods: This was a double-blind, randomized, placebo-controlled crossover trial. Each participant was randomly assigned to receive 1 injection session of either BoNT-A (100 IU/2 mL of Prosigne in each adductor magnus and each triceps surae) or saline 0.9% (2 mL). The primary outcome measure was change from baseline in maximal gait velocity, and secondary outcome measures included changes in gait at self-selected velocity, spasticity, muscle strength, Spastic Paraplegia Rating Scale, pain, fatigue, and subjective perception of improvement. We also looked at adverse events reported by the patients.Results: We enrolled 55 patients, 36 of whom were men and 41 with the pure phenotype. Mean age was 43 AE 13.4 years (range, 19-72 years), mean age of onset waws 27 AE 13.1 years (range, <1 to 55 yars), and mean disease duration was 17 AE 12.7 years (range, 1-62 years). Compared with baseline, we did not find significant differences between groups in primary and secondary outcomes, except for reduction in adductor tone (P = 0.01). The adverse events were transient and tolerable, and their incidence did not significantly differ between treatments (P = 0.17). Conclusions: BoNT-A was safe in patients with hereditary spastic paraplegias and reduced the adductor tone, but it was not able to produce functional improvement considering the doses, injection protocol, measures, and instruments used.
A BS TRACT: Background: The cerebellar ataxia, neuropathy, and vestibular areflexia syndrome was initially described in the early 1990s as a late-onset slowly progressive condition. Its underlying genetic cause was recently mapped to the RFC1 gene, and additional reports have expanded on the phenotypic manifestations related to RFC1, although little is known about the pattern and extent of structural brain abnormalities in this condition.Objective: The aim is to characterize the structural signature of brain damage in RFC1-related disorder, correlating the findings with clinical symptoms and normal brain RFC1 expression. Methods: We recruited 22 individuals with molecular confirmation of RFC1 expansions and submitted them to high-resolution 3T magnetic resonance imaging scans. We performed multimodal analyses to assess separately cerebral and cerebellar abnormalities within gray and white matter (WM). The results were compared with a group of 22 age-and sex-matched controls. Results:The mean age and disease duration of patients were 62.8 and 10.9 years, respectively. Ataxia, sensory neuronopathy, and vestibular areflexia were the most frequent manifestations, but parkinsonism and pyramidal signs were also noticed. We found that RFC1-related disorder is characterized by widespread and relatively symmetric cerebellar and basal ganglia atrophy. There is brainstem volumetric reduction along all its segments. Cerebral WM is also involved-mostly the corpus callosum and deep tracts, but cerebral cortical damage is rather restricted. Conclusion: This study adds new relevant insights into the pathophysiological mechanisms of RFC1-related disorder. It should no longer be considered a purely cerebellar and sensory pathway disorder. Basal ganglia and deep cerebral WM are additional targets of damage.
We read the letter titled "RFC1 Intronic Repeat Expansions Absent in Pathologically Confirmed Multiple Systems Atrophy" published online in April 2020 1 with great interest. In light of that letter, we would like to expand the phenotypic spectrum of RFC1 expansion-related disorders by reporting dopa-responsive parkinsonism in a 63-year-old woman. She developed parkinsonian symptoms in her early 50s, characterized by bradykinesia, resting tremor, and stiffness. The patient was started on levodopa as a symptomatic therapy with overt gait improvement (Video S1). Approximately 1 year later, she noticed oscillopsia and sensory complaints described as asymmetrical limb paresthesia that became confluent and associated with decreased vibration as well as proprioceptive sensation leading to gait unsteadiness. Head impulse test demonstrated absent vestibulo-ocular reflex bilaterally. A 20-year dry cough history was also reported. Brain magnetic resonance imaging and laboratory workup were unremarkable. Nerve conduction studies showed diffuse abnormalities restricted to sensory nerves, quantitative sudomotor axonal reflex was normal, and heart rate variability revealed incipient cardiac dysautonomia. Dopamine transporter scan highlighted a marked reduction of dopaminergic
A BS TRACT: Background: Spinal cord has been considered the main target of damage in hereditary spastic paraplegias (HSPs), but mounting evidence indicates that the brain is also affected. Despite this, little is known about the brain signature of HSPs, in particular regarding stratification for specific genetic subtypes. Objective: We aimed to characterize cerebral and cerebellar damage in five HSP subtypes (9 SPG3A, 27 SPG4, 10 SPG7, 9 SPG8, and 29 SPG11) and to uncover the clinical and gene expression correlates. Methods: We obtained high-resolution brain T1 and diffusion tensor image (DTI) datasets in this cross-sectional case-control study (n = 84). The MRICloud, FreeSurfer, and CERES-SUIT pipelines were employed to assess cerebral gray (GM) and white matter (WM) as well as the cerebellum. Results: Brain abnormalities were found in all but one HSP group (SPG3A), but the patterns were gene-specific: basal ganglia, thalamic, and posterior WM involvement in SPG4; diffuse WM and cerebellar involvement in SPG7; cortical thinning at the motor cortices and pallidal atrophy in SPG8; and widespread GM, WM, and deep cerebellar nuclei damage in SPG11. Abnormal regions in SPG4 and SPG8 matched those with higher SPAST and WASHC5 expression, whereas in SPG7 and SPG11 this concordance was only noticed in the cerebellum. Conclusions: Brain damage is a conspicuous feature of HSPs (even for pure subtypes), but the pattern of abnormalities is genotype-specific. Correlation between brain structural damage and gene expression maps is different for autosomal dominant and recessive HSPs, pointing to distinct pathophysiological mechanisms underlying brain damage in these subgroups of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.