O fluxo da água em meios porosos é governado por uma equação diferencial parcial (a equação de Richards), cuja forma mista envolve as variáveis umidade do solo e potencial mátrico. A curva de retenção é uma relação não linear entre estas variáveis, fundamental no estudo da dinâmica da água no solo na zona vadosa. Um dos objetivos deste trabalho á avaliar o modelo de curva de retenção da água no solo que melhor ajusta os dados mensurados de umidade e potencial mátrico, obtidos a partir de um experimento realizado na Universidade Federal Rural do Rio de Janeiro. No presente artigo, um Algoritmo Genético (AG) é proposto de forma a buscar os parâmetros de ajuste que maximizam o coeficiente de determinação, considerando três horizontes de solo e os seguintes modelos de curvas de retenção: van Genuchten, Brooks-Corey e Haverkamp. A performance do AG implementado é avaliada comparando os resultados obtidos com o programa SWRC Fit, que usa o método determinístico de Levenberg-Marquardt. A partir dos resultados obtidos pode-se observar que o AG ajustou com maior precisão os dados mensurados e o modelo Haverkamp apresentou o maior coeficiente de determinação. Além disso, o esquema de discretização da equação de Richards proposto se apresentou mais estável usando o modelo Haverkamp como curva de retenção da água no solo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.